Signaling of IL 4 and IL 13 Genetic Variants in Asthma Pathogenesis

Pratibha Dixit1, Shally Awasthi2

King George’s Medical University, Lucknow, U.P., India

Abstract: Prevalence of chronic disorder like asthma has dramatically increased in recent decades. These are mainly disorder of immune system, the results of complex interactions among various genetic and environmental factors. Interleukin 4 and 13, a Th2 type cytokine play key role in inflammatory pathway, emerged in the pathogenesis of bronchial asthma. Both are act as central regulator in IgE synthesis, mucus hyper-secretion and airway hyper-responsiveness. In this review, we described the signal transduction mechanism of IL4/13 pathway, ligand and their receptor involvement in inflammatory pathway. Summarizes the information related to the association of interleukin genes with asthma. Report ranges from studies showing positive or protective association to those showing no association. Therefore, studies with sufficiently large sample size and detailed phenotype are required to define the potential contribution of interleukin genes in the pathogenesis of asthma.

Keywords: asthma, Interleukins, polymorphisms

1. Introduction

Asthma is chronic obstructive pulmonary disease characterized by inflammatory reactions along with elevated IgE levels. IgE responses are mainly regulated by human major histocompatibility complex (MHC) HLA class II and T-cell receptor (TCR) genes and involvement of T-B cognate interactions where as involvement of non-cognate interactions of mast cells, basophils and T cells with B cells in non-antigen-specific IgE responses1.

Interleukins (IL) 4 and 13 are highly expressed in lungs and their levels are high in peripheral blood in bronchial asthma patients 2, 3. Also they share common receptors and promote STAT6 (signal transducer and activator of transcription) activation (Fig. 1). Moreover their over-expression induces a bronchial asthma-like phenotype and blockage impairs the induction of a bronchial asthma-like phenotype in mice4, 5, 6. Till date, strong linkages have been identified to flanking markers of the human cytokine gene cluster on 5q31 7, 8, 9 and 16p12 10, which include IL4/IL13 and IL4R, respectively. Many groups have tried to identify variants of these genes and to test whether these are associated with asthma or atopy.

The aim of this review is therefore to summarize variants within the IL-4/IL-13 pathway and to discuss the functional aspects of these variants in relation to atopy and asthma.

2. IL-4 and IL-13

IL4 and IL13 are located on chromosome 5q31 within 25 kb and genome searches identified them as strong linkage with asthma and atopy8. In Caucasian populations a di-nucleotide repeat in the third intron of IL4 is linked to total serum IgE levels7 but not to asthma, whereas in Japanese population linkage to both high IgE levels and asthma has been found11.

Till date, in IL4 promoter region five putative variants have been reported, of which four are very rare12, 13. In American 14 and Japanese populations11, C590T of IL 4 promoter has been reported to elevate IgE levels. It supports the candidacy of IL4 as an atopic locus on 5q31. In vitro it also associated with IL-4 activity and shows higher binding affinity to nuclear transcription factors14. Though, no direct link to cellular IgE synthesis has been shown and the majority of the studies cannot replicate the original association.

IL-4 and IL-13 exert similar biological activity4; IL-13 shows unique activities. IL-13 induces patho-physiological features of asthma independent of IL-4, but dependent on IL-4Ra4, 5. None of them show redundancy. These findings emphasize that IL-13 might play a key role in induction of asthma through the IL-4Ra chain. In relation to asthma15, two variants of IL13 have been identified: one is in the promoter in association with IL-13 production; and the other represents charge change, and may alter ligand-receptor binding and hence up-regulate IL-13 signaling. Test of their association of these two variants with atopy or asthma among different ethnic groups are in progress16.

3. Receptors: IL-4R and IL-13R

The human IL-4R is a hetero-dimeric complex comprising the IL-4Ra chain and gc chain (Fig. 1). It is also an essential component of IL-13R. IL-4Ra-null mice lack IgE synthesis and Th2 immune reactions, suggesting that the IL-4Ra chain is a crucial component for binding and signal transduction of both IL-4 and IL-13. IL-4R located on chromosome 16p10, strong genetic linkage has been found between atopy and flanking markers whereas negative or indeterminate linkage searches have been found for this region7, 8. Arg551Gln, variant of IL-4Ra has been identified in a study of individuals with hyper-IgE syndrome and severe eczema, it was found in excess7. Impaired binding of the negative regulator protein tyrosine phosphates SHP1 and increased expression of CD23 (FceRII) on peripheral blood mononuclear cells of individuals bearing the Arg551 allele after challenge with IL-4 was showed by functional analysis. It was also associated with higher IgE levels. However, no excess of Arg551 was found in a large cohort of hyper-IgE syndrome patients18 and impairment of SHP1 was not replicated19. Unlikely in German population lower IgE levels were found in individuals bearing the Arg551 allele20. It has
tight linkage disequilibrium with another variant, Pro478, in IL-4Ra chain of IL-4R. Arg551 also alters STAT6 binding as the phospho-phonylation of the substrate STAT6 was reduced in the presence of Pro478 alone. Thus, Pro478 and Arg551 influence signal transduction pathways through IL-4Ra. This could explain the observed association effects with lowered total IgE concentrations. In Japanese populations, in relation to atopic asthma another extracellular variant Ile50Val has been identified20, 22. Functional assays show that Ile50 up regulates cellular IgE synthesis as well as STAT6 activation. These effects suggest that Ile50 is crucial for enhanced IL-4 and IL-13 signaling. Ile50 is in the extracellular domain of human IL-4Ra next to Cys49; therefore, conformational change or alteration of binding affinity is hypothesized on the basis of a similar extracellular variant, Thr49Ile, in the IL-4Ra chain of BALB/c mice, which might alter the ligand-binding affinity of IL-4Ra3. However, computer modeling cannot explain how such a simple amino acid change (Ile/Val 50) acts 27 and the exact mechanism of Ile50 on IgE up-regulation remains unsolved. Besides Ile50Val, a variant Glu375Ala, is associated with atopy and is in linkage disequilibrium with Cys406Arg in a Japanese population. However, the role of these variants in relation to Ile50 is not yet known.

In contrast with IL-4R, little is known about human IL-13R composed of two components, IL-13Ra1 and IL-13Ra2 chains 1. Both human IL13RA1 and IL13RA2 are single genes on chromosome Xq13. IL-13Ra1 binds weakly to IL-13, but a hetero dimer consisting of IL-4Ra and IL-13Ra1 acts as a functional receptor for both human IL-4 and IL-13. IL-13Ra2 alone binds to its ligand with higher affinity; its functional role, decoy or active, remains unknown. Therefore, IL-13R is called type II IL-4R. But the exact composition of the human IL-4R and IL-13R is not yet known29.

Human IL-13R is abundant on non-immune cells, and administration of IL-13 confers an asthma-like phenotype to T-cell-deficient mice30, it will be a key area of future study to elucidate whether functional IL-13R is expressed on non-immune cells in the lung tissues, and to test if novel variants of the two genes associate with asthma.

4. IL-4Ra

Elevation of IgE levels leads to clinical symptoms of asthma, eczema and rhinitis. It is known that IL-4Ra gene shows a strong genetic linkage25. A variant of human IL-4Ra, which substitute’s isoleucine (Ile) for valine (Val), has been identified31 and tried to detect whether this variant might promote dys-regulation of IgE synthesis. They conduct genetic association studies of serum IgE levels in Japanese and British populations22 and found a significant difference in Ile/Val50 genotype frequencies between control and atopic subjects in a Japanese population. Ile50 associated with atopic asthma but not non-atopic asthma, also highly significantly associated with raised total serum IgE levels and mite-specific IgE. Nonetheless, in British population this variant did not show significant association with atopy25. Functional effect of Ile50Val on IgE synthesis was also tested by transfected the plasmid encoding human "IL-4Ra carrying either Ile50 or Val50 into a mouse and a human cell line (Fig. 2). It was found that the transcription activity of Ile50-type was enhanced in human IL-4 as compared to Val50-type in both transfecntants. Its mechanism of action has not been described till date22.

In Caucasians another variant of IL-4Ra has been discussed, in which glutamine (Gln) at amino acid 551 are replaced with arginine (Arg) in bronchial asthma27, 28. However this was reported as invariant between control and atopic subjects in both Japanese and British populations29. In Germans atopics, its frequency was lower as compared to controls. It was concluded that Arg551Gln does not affect "IL-4 signals".

5. IL-13Ra1

In German population Izuhara et al in year 2000 identified a novel single nucleotide polymorphism (SNP), A1398G in the non-coding region of the "IL-13Ra1 gene based on the cDNA number. This gene was located on the X chromosome, the incidence of this variant was calculated for atopy in male and female subjects30. In the British population, the incidence was significantly higher in males; however, there was no significant difference in the Japanese population. As this is a silent variant, it would be possible that there is linkage disequilibrium SNP functionally correlated with asthma or alternatively affects expression of IL-13Ra125.

6. Signal transduction of IL-4 and IL-13

It had been assumed that IL4 signals through functional IL-4R 31, 32 was composed of α-chain (IL-4Ra') and the common cytokine receptor (γ chain (γc) 1), whereas both IL-4 and IL-13 signal through the type II which consists of the IL-4Ra chain and the IL-13Ra1 chain (Fig. 1). Thereafter in both the mouse and human system in IL 13 two binding units were identified the IL-13 Ra α chain 1 (IL-13Ra1') and IL-13Ra233, 34, 35. Additionally in type I IL-4R, hetero dimer consisting of IL-4Ra and IL-13Ra. It is also called type II IL-4R beacuse act as a functional IL-4Ra36, 37. Both homo and hetero-dimer (consisting of IL-4Ra and either γc or IL-13Ra1) of IL-4Ra are able to transduce IL-4 signals37, 38. The IL-13 receptor is also composed of the hetero-dimer consisting of IL-13Ra1 and IL-4Ra1. Both of them are necessary for each other to exert substantial binding activity to IL-1331. It indicates that IL-4 and IL-13 transduce the same signals when they engage type II IL-4R/IL-13R. IL-4 and IL-13 receptors by the ligands induce activation of a variety of signal-transducing molecules1, 34.

It converges into two pathways: the JAK-signal transducer and activator of transcription (STAT) pathway and the phosphatidyl inositol 3 (PI3)-kinase pathway. JAK - STAT pathway includes JAK1, JAK3 and Tyk2 activated by Type I receptors whereas JAK1 and Tyk2 activated by Type II receptors, followed by activation of STAT37, 39. It plays a central role in the signal transduction of IL-4 and IL-13 including IgE synthesis, Th2 differentiation, proliferation of B cells and T cells and deactivation of monocytes, based on analyses of STAT6-deficient mice and those of the promoter region of the cytokine-targeted genes40, 41, 42. Along with STAT6, IL-4 and IL-13 also activate STAT3, dependent on
expression of "IL-13Rα1". It is also thought that though both receptors are engaged by IL-4, type I and type II IL-4R signal pathways are different because they have tyrosine residues located in the C terminus of IL-13Rα1 which are the binding sites for STAT3. It is main point that which type of receptor is expressed to elucidate the signal transduction mechanism of IL-4. Till date, the physiological role of STAT3 on IL-4 and IL-13 signals are unknown. It is of interest to clarify what kinds of genes are induced by STAT3.

Genetic association between a variant of STAT6 and asthma with modest atopy phenotype has been identified in a Japanese population, supporting the candidacy of STAT6 as the "atopic asthma" locus on 12q13. CD23 bind to the D-NA target sequence to which STAT6 binds, therefore, dysfunction of these molecules might promote atopy. A Hind III polymorphism in the first intron of this gene has been identified in relation to marked atopy in a British population, suggesting that BCL6 (act as repressor) might repress STAT6-activated transcription and there by STAT6-mediated IL-4 and IL-13 mechanisms. It is anticipated that other molecules might repress STAT6 activity. The identification of novel mechanisms for the STAT6-induced regulation of germ line e transcription may have important implications for future therapeutic development in atopy and asthma. Mutations of JAK3 have been identified in relation to SCID; however, no common polymorphism has been identified in JAK3. To date, neither a single nucleotide nor microsatellite polymorphism has been identified in either JAK1 or TYK2.

7. Database included

The Pub Med based comprehensive literature search was also done. The Medline database was used to gather initial sources for review. The key words used were “Interleukins (IL) 4 and 13” OR “asthma” OR “Cytokines in asthma” and “Interleukins 4 and 13 receptors in asthma”. All articles identified by these search terms and related to the study were included for critical review.

8. Association of IL4 and 13 genes with asthma

Association of interleukin genes with asthma has been described by various studies (Table 1). Firstly in 1994, Marsh and colleagues showed a linkage between total serum IgE and markers on chromosome 5q31-q33, which contains the interleukin-3 (IL-3), IL-4, IL-5, IL-13, and granulocyte-macrophage colony stimulating factor (GM-CSF) genes. After that various studies have been performed to assess an association between asthma and Interleukin genes led to inconsistent results with a study. Till now several studies have been conducted in different populations and revealed interesting but conflicting facts about asthma development and interleukin gene variation, with some studies showing positive association with asthma and others showing either protective or no association.

Mitsuyasu and colleagues in year 1998 reported association of Ile50Val polymorphism of IL4R gene polymorphism. Noguchi et al replicated the study in Japanese population in 86 families (375 members including 172 atopic asthma children) and reported Ile50Val polymorphism of IL4R does not play a substantial role in genetic predisposition for the etiology of atopic or asthma.

In Caucasian population, Garcia et al in year 2005 analyzed different polymorphisms of IL4 and IL4RA genes particularly, -33C>TIL4 and 576Q>RIL4RA in 212 unrelated individuals, 133 patients with asthma and 79 healthy subjects without symptoms or history of asthma or atopy and with negative skin prick tests. According to multivariate analysis adjusted for age and sex they confirmed that carriers of allele T had an increased risk of persistent asthma (OR =2.77, 95%CI=1.18-6.49, P value = 0.019).

In Chinese population, Li et al in 2009 tried to find out the association of 8 SNPs (IL-13 C1112T, IL-13 C1923T, IL-4 -590T, IL-4RA 175V, FcεR1B E237G, β2-ADR Q27E, FcεR1B C-109T and β2-ADR R16G) in 192 asthmatic children and controls. They suggest that FcεR1B C-109T (OR= 1.96, 95%CI= 1.31-2.94, P value= 0.001) and β2-ADR R16G (OR=2.58, 95%CI= 1.66-3.99, P value= 0.000) are significantly associated with childhood asthma and have combined effect on the development of asthma. Another study in year 2013 in same population investigated the single and combined associations between the polymorphism (SNP) loci in IL-13 and RANTES genes with the development of asthma and reported the three loci (IL-13 C-1112T, IL-13 C1923T, and RANTES A-403G) make little contribution to the development of asthma in children. IL-13 A2044G and RANTES G-28C are significantly associated with childhood asthma, also have a significant and combined effect on the development of asthma (OR =2.59, P = 0.0001; OR = 3.00, P =0.001 respectively).

In Asian population Weidong et al in year 2007 determined Ile50Val and Q576R polymorphisms of IL4R gene in Chinese, Malay and Indian populations. They observed that heterozygote of Ile50Val is less frequent in asthmatics than in controls in Malay population and no difference was found in Chinese and Indian population. Ile50/Ile50 was more prevalent in higher total serum IgE group in Malay. The prevalence of Ile50/R576 haplotype was lower in asthmatics than controls in Chinese while the prevalence of Ile50/Q576 haplotype was lower in asthmatics than in controls in Malay. Cohort study in year 2003, has been done in 368 children and 548 parents of those children to investigate the haplotype association of IL13 Arg130Gln and C1112 T polymorphisms. The suggest that the IL13 Arg130Gln polymorphism and haplotype consisting of IL13 Arg130Gln and IL4 C589 T were associated with the development of atopy and atopic dermatitis at 24 months of age.

In Pakistani population a study has been performed by Micheal in year 2013, with 108 asthmatics and 106 allergic rhinitis patients along with 120 healthy controls. All were genotyped for IL-4 SNPs, C-589T (rs2243250), T+2979G (rs2227284), and C-33T (rs2070874). They indicated significant association of SNP rs2243250 both with asthma (P=0.004, OR=11.0) and allergic rhinitis (P<0.001, OR=20.2), as was T-2979G (P<0.001, OR=22.51 for asthma and P<0.001, OR=57.6 for allergic rhinitis). The most frequent genotypes

Volume 4 Issue 12, December 2015
www.ijsr.net
Licensed Under Creative Commons Attribution CC BY
in the asthma and allergic rhinitis groups were TT for SNP rs2243250 and GG for SNP rs2227284 in Pakistani cohort.

In Indian context some studies have reported association of interleukins with asthma. Such as Nagarkatti et al in year 2004, performed a case-control study and reported that promoter region of the IL4 gene is invariant in north India but a significant difference was observed in CA repeat polymorphisms in the second intron of IL-4. Moreover these findings was supported by Mahdi et al in year 2010, they also revealed no association of IL4 and ADAM33 gene SNPs with asthma in Indian population.

Another study in year 2013 from South India reported positive association of IL 4 C590T and elevated levels of serum IgE. They enrolled 56 atopic asthma patients and 42 healthy control subject equivalent gender, age, and ethnicity. Their results have shown that IL-4-590T allele may be a risk factor for the development of asthma and atopy in the south Indian population (OR=0.302, 95% CI=0.2856-0.319, P value=0.044). Patients who carried T allele of -590C/T IL-4 also showed an increased risk of allergic asthma.

Dixit et al in 2014 reported significant association of IL 4R and IL 13 in Indian asthmatic children. They enrolled 275 cases and 275 controls.

Gene- gene interaction has also been identified in Dutch population in year 2001, suggested that variations in IL4RA contribute to elevated total serum IgE levels, and interaction between IL4RA and IL13 markedly increases an individual's susceptibility to asthma. A significant gene-gene interaction between S478P in IL4RA and promoter variation in IL13, found to be associated with BHR individuals. Another study in year 2006, investigated the relationship of IL-13 and IL-13Ra1 polymorphisms with IgE production in Korean children with asthma. They enrolled 358 atopic asthmatic, 111 non-atopic asthmatic, and 146 non-atopic healthy children and reported that gene- gene interaction between risk alleles of each IL-13 promoter polymorphism and IL-13Ra1 polymorphism was associated with higher total IgE in children with atopic asthma (P=0.002, 0.010). Later on by Natalie et al in year 2007, significant gene-gene interaction was found between the IL-13 (A646G) and IL-4R (A4679G) SNPs for baseline lung function in Africans and Americans.

9. Conclusion

Genetic and functional analyses provide increasing evidence that there are major loci for asthma in relation to signaling of IL-4 and IL-13 through IL4Ra–STAT6. They are essential for the action of both cytokines, and for the development of the disease asthma.

Till date, however, no common variant of the genes in this pathway is associated across the different ethnic groups with phenotypes. Moreover the interaction of variants, which might be in linkage disequilibrium to each other, can potentiate rather than add to functional effects. It shows that the genetic etiology of asthma is far more complex than we expected, in relation to molecular heterogeneity and genetic interaction within and among molecules on IL-4/IL-13 signaling.

Future statistical genetic analysis might allow prediction of asthma phenotypes among different ethnic groups, as well as potential interactions between different variants. Studies on IL-4/IL-13 signaling highlighted the etiological relationship of asthma. Epidemiological data suggest that atopy is the strongest risk factor for the development of asthma, but in some cases asthma may be independent phenomena. This hypothesis is concordant with animal models where mechanisms responsible for asthma are independent of IgE levels. Functional alteration of the ligands or the receptors in IL-4/IL-13 signaling might act on B cells producing IgE antibody, while allowing naive T cells to differentiate towards Th2 cells; these may occur in the same time course. This might explain why the majority of asthmatics are also atopic. Comparison of functional genotype among key genes between atopic and non atopic can clarify this point. Therefore further studies with appropriate sample size in different populations with asthma with well defined criteria will help to characterize a possible role of interleukin genes in a etiology of asthma disease.

References

[37] Moriggl R, Erhardt I, Kammer W and Berchtold S. Activation of STAT6 is not dependent on phosphotyrosine-mediated docking to the interleukin-4 receptor and can be blocked by dominant-negative mutants of both receptor subunits. Eur J Biochem 1998; 251: 25–35.

Table 1: Interleukin 4 & 13 genes and receptor polymorphisms studied in different populations in relation to asthma

<table>
<thead>
<tr>
<th>S. no</th>
<th>Polymorphisms studied</th>
<th>Population</th>
<th>Study Design</th>
<th>Cases/sample size</th>
<th>Association</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IL 4R (Ile50Val)</td>
<td>Japanese</td>
<td>Case-control</td>
<td>Asthmas- 172</td>
<td>Negative</td>
<td>Nogouchi et al; 1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Controls – 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>IL4 receptor (IL4RA)</td>
<td>African Americans, European Americans and East Asians</td>
<td>Cohort Study</td>
<td>Healthy Individuals- 12</td>
<td>Positive</td>
<td>Wu et al; 2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2nd Intron of IL 4</td>
<td>North Indian</td>
<td>Case-control</td>
<td>Asthmatic probands-171</td>
<td>Negative</td>
<td>Nagarkatti et al; 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Controls- 128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-33C>T/IL4 and 576Q>R</td>
<td>Caucasian</td>
<td>Case-control</td>
<td>Asthma- 133 Healthy subjects-79</td>
<td>Negative</td>
<td>Maria et al; 2005</td>
</tr>
<tr>
<td></td>
<td>IL4R (Ile50Val)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>18 SNPs in IL-4, IL-13, and IL- 4R genes</td>
<td>African-American</td>
<td>Cohort Study</td>
<td>Asthmatics- 24</td>
<td>Negative</td>
<td>Natalie et al; 2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>IL 4R (Ile50Val)</td>
<td>Asian population(Chinese, Malaysian and Indian)</td>
<td>Case-control</td>
<td>Asthmetics-303 Healthy Controls-355</td>
<td>Negative</td>
<td>Weidong et al; 2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>IL 4 (C590T) IL 13 (C1112T)</td>
<td>Chinese</td>
<td>Case-control</td>
<td>Asthma-192 Healthy Controls-192</td>
<td>Negative</td>
<td>Li et al; 2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>IL 4 (C590T) IL 4R (Glu375Arg) IL13 (C-111T)</td>
<td>Indian</td>
<td>Case-control</td>
<td>Asthmatics-200 Healthy Controls-100</td>
<td>Negative</td>
<td>Mahdi et al; 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>IL 4R</td>
<td>American</td>
<td>Case-control</td>
<td>Asthmatic pro-band-407</td>
<td>Positive</td>
<td>Renske et al; 2010</td>
</tr>
<tr>
<td></td>
<td>(Glu375Arg) IL13 (C-111T)</td>
<td></td>
<td></td>
<td>Asthmatic cases-118 Allergic rhinitis-188 Unrelated controls</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>IL 13 (C112T)</td>
<td>Chinese</td>
<td>Case-control</td>
<td>Asthmatics- 384 Healthy Controls-384</td>
<td>Negative</td>
<td>Quanhua et al; 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>IL 4 (C590T) IL 4R (Ile50Val) IL 13 (C1112T) IL 13 R (A1398G)</td>
<td>Pakistani</td>
<td>Case-control</td>
<td>Asthma-108 Healthy Controls-106</td>
<td>Positive</td>
<td>Micheal et al; 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>IL 4 (C590T) IL 4R (Ile50Val) IL 13 (C1112T) IL 13 R (A1398G)</td>
<td>South Indian</td>
<td>Case-control</td>
<td>Atopic asthma- 56 Healthy control-42</td>
<td>Positive</td>
<td>Vishnumaya et al; 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>IL 4 (C590T) IL 4R (Ile50Val) IL 13 (C1112T) IL 13 R (A1398G)</td>
<td>Indian</td>
<td>Case-control</td>
<td>Asthmatics- 275 Healthy Controls-275</td>
<td>Positive</td>
<td>Dixit et al 2014</td>
</tr>
</tbody>
</table>

Fig. 1. Effects of Ile50Val on IL- 4 signals. A schematic model of Ile50Val effects on IL- 4 signals is depicted. Upon stimulation of IL- 4, Ile50 - typed IL- 4Rα transducers stronger signals than Val50 - typed IL- 4Rα.
Fig 2. Signal transduction pathways of IL-4 and IL-13. A schematic model of signal transduction pathways of IL 4 and 13 is depicted. Note that type II IL-4R/IL-13R transduces the STAT3 pathway in addition to the STAT6 pathway.