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Abstract: In this paper, Adomoian decomposition method is applied to Bernoulli differential equations and the general Adomian 

polynomial for this class of equation is presented. Different Bernoulli differential equations with variable exponent of the nonlinear 

terms were considered as test problems. And the result shows fantastic exact solutions as those obtained by classical method. 

 
Keywords: Adomian Decomposition Method, Bernoulli Differential equations.  

 

1. Introduction 
 
Bernoulli differential equations (BDE) are nonlinear 
differential equations named after J. Bernoulli, a swiss 
scientist. There are used in modern Physics for modeling the 
dynamics behind certain circuit elements known as Bernoulli 
memristors. These types of differential equations are special 
because they are nonlinear with exact solutions. The equation 
has a nonlinear term which is a function of the independent 
variable raise to a certain exponent, say n. When n is zero or 
one, the BDE is linear. But for 2n  , substitution is carried 
out to transform it to a linear form which can then be solved 
linearly [6] and [7]. In this paper we apply Adomian 
decomposition method (ADM) to solve BDE with 2n  .  
 
Adomian Decomposition Method (ADM) generates a 
solution inform of a series whose terms are determined by a 
recursive relation using the Adomian polynomial, [1], [8] and 
[2]. Since it was presented in 1980’s several modification of 
the Adomian polynomial has been presented [4]. [5] 
introduced a modified Adomian polynomial which converges 
slightly faster than the original and also presented accelerated 
Adomian polynomial. Despite various types of Adomian 
polynomial available, the original Adomian polynomial is 
generally being used based on the advantage of convenient 
algorithm which is easily remembered.  
 
2. Description ADM for BDE 
 
The BDE is given as 
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Here we consider a case of 2  and we use the ADM to 
find solution to equation (1). The ADM consist of 
approximating the solution of (1) as an infinite series 
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and decomposing the nonlinear operator )(N  as  
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where An is Adomian polynomial, see [1]-[5], given by  
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  and   is a grouping parameter. In 

operator form equation (1) is given as  
                  )t(f)t(PL                        (5) 

where 
dt
dL   is a differential operator. Taking inverse 

linear operator 1L  on both sides of equation (5), we have 
              ]A)t(f[L])t(p[L)t(a)t( n
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For BDE dt(.)fL 1  Applying equation (2), (3) and (4) in 
(6), we obtain  

          










0n

n
1

n
1

0n
n ]A)t(f[L])t(p[L)t(a    (7) 

where the recursive relation is given as 
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The first seven Adomian polynomial of BDE from equation 
(4) are given as 
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3. Illustrative Examples 
 
In this section, the ADM for BDE described earlier will be 
demonstrated on two examples. And we compare the 
analytical solution with those obtained by ADM. 
 
Example 1 
Consider   

           1)0(,02 5  ,                   (10) 
The exact solution of equation (10) is given as 
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In series form, equation (11) is given as 
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Applying equation (8) and (9) to equation (10), we obtained 
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710 ...,,   obtained by ADM are the same as the first 8 
terms of equation (12) which is the exact solution of BDE 
(10).  Figure 1 and 2 further shows the similarities between 
results obtained by ADM and that of exact solution. In Figure 
1, we considered an infinite series of θ while in Figure 2 we 

considered .
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Example 2. 

Consider 
                1)0(,t 6                          (13) 

The exact solution of equation (13) is given as 

         
4te5e

e5
t5t5

t5
5


                                   (14) 

In series form, equation (14) is given as 
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Similarly, applying equation (8) and (9) to equation (10), we 
have 
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All the terms of equation (16) are the same as those of 
equation (15), which is the classical solution of BDE (13). 
Thus, more calculation of the terms of n gives more 
accurate results. Hence, the required accuracy by ADM can 
be enhanced by inclusion of more terms of n . Figures 3 
and 4 further shows that there is no difference between ADM 
and that of exact solution of equation (13). 
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4.    Conclusion 
 

In this paper, we have successfully applied Adomian 
Decomposition Method to Bernoulli differential equations. 
We gave the general Adomian polynomial for the nonlinear 
term in the Bernoulli differential equations and applied it to 
practical problems. The problems considered were positive 
index of the nonlinear term. This can easily be extended to 
negative index using the general Adomian polynomial of the 
nonlinear term given in this paper. The result obtained by 
Adomian Decomposition Method from each Bernoulli 
differential equations were exactly the same as those of the 
analytical solutions. And, the exact solutions compared to 
those obtained by Adomian Decomposition Method are 
clearly depicted in Figures 1, 2, 3 and 4. 
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