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Abstract: With Internet of Things number of users and devices connected to internet is growing exponentially. Stream processing and 

CEP systems are designed to support class of applications which requires fast and timely analysis of high volume data streams. 

Complex event processing, or CEP, is event/stream processing that combines data from multiple sources to infer events or patterns that 

suggest more complicated circumstances. In this paper we describe how we implemented join operation on high velocity streams for 

Lightning- High Performance & Low Latency Complex Event Processor. We will discuss how inverted index and other methods can 

help in improving performance of system. 
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1. Introduction 
 
With Internet of Things number of users and devices 
connected to internet is growing exponentially. Each 
connected device and its user generates lot of data which 
organizations want to analyze and use for their businesses. 
Generated data can be system logs, user activity, sensor 
reading and transactions in financial systems etc. Traditional 
systems stores data in RDMS and they use query language 
like SQL to retrieve required data for business use. BIG or 
internet scale data is very high volume of data which is in 
Peta Bytes. Database systems are not able to handle BIG data 
so Hadoop like batch processing are evolved to process BIG 
data and they provide offline data processing capability. 
 
Stream processing systems support a different class of 
applications which continuously consumes and process data 
while continuously producing results. Touple is input data 
element and a continuous flow of touples is called streams. 
Examples of streams include user-click, event logs, network 
traffic, readings from sensor (GPS location, traffic 
movement, temperature), and various other data feeds. 
Stream processing systems are used to provide content to 
user and help organization to make better and faster 
decisions. Users of the content based system want’s real-time 
information about surrounding e.g. news. Enterprise or 
organization wants real-time information from their system to 
detect intrusion, analyze fraud, analyze social media trends 
etc. Many open source and commercial stream processing 
systems are evolved and they provide basic infrastructure for 
stream processing. 
 
Stream processing applications have very different 
requirements than those of batch processing applications. 
Order of data receipt impacts result of system. So stream 
processing applications are temporally sensitive. So they are 
generally time-critical because their use is promptness with 
which results are produced. Systems which find network 
intrusions or credit cards fraud patterns should respond 
quickly to an observed threat. Some other examples of stream 
applications include real-time video processing, automated 
stock trading, geo-spatial trajectory modification and vital-
signs monitoring. Results produced by such applications are 
often urgent and they require immediate action. Importance 
and applicability rapidly decrease if result of these 

applications becomes more and more delayed. Best example 
of this is intrusion detection systems. If organization is able 
to identify intrusion detection and its patterns they will be 
able to defend their system against attack. In financial system 
like stock trading if firm is able to identify stock trends 
before others they will be able to gain more profit. In time-
critical stream processing, it is important to minimize the 
average latency of the continuously emitted results instead of 
throughput. While stream applications which are not time-
critical process as large a stream as possible with maximizing 
throughput. 
 
Complex event processing, or CEP, is subset of event/stream 
processing which combines data from multiple sources. CEP 
infers events or patterns from multiple sources that suggest 
more complicated circumstances. While Stream processing 
system consider each event separately, CEP systems consider 
complex event patterns that considers the multiple and 
related events. Aim of this papers to describe how we 
designed Join processing elements which are critical to CEP.  
 
2. Architecture 
 
CEP combines data from multiple sources and finds events or 
patterns that related to complicated circumstances. Main 
difference between traditional DBMS and CEP systems is 
tradition DBMS system store data and then process then 
using queries. CPE systems do not store data they processes 
data as it is available. Following Figure 1 shows difference 
between CEP system and database. 
 

  
Figure 1: DBMS VS CEP Engine 

 
Figure 2 show architecture of Lightening CEP. It uses pull 
model which pulls data from different sources and CEP 
engine process that data. It will also use lock free data 
structure for inter thread communication which is very fast 
compared to traditional Queue. 
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Figure 2: Lightning CEP Architecture 

 
Input to CEP engine is Input adapter or receiver. It reads 
events from event source and sends them to core engine for 
processing. User can define custom Input Adapter which can 
pull data from multiple sources like web feeds, user clicks, 
queues, and log file etc. 
 
Ring Buffer which provides lock free inter-thread 
communication is used for communication between different 
threads. Multiple buffers can be connected to each other to 
form processing pipeline as shown in Figure 2 has input and 
output ring buffers.  
 
Queries can be defined by user as per requirement. Query 
compiler parses queries provided by user and required 
request processing pipeline of processing objects is created. 
Query pipeline is like directed graph of Ring Buffers. On 
each buffer multiple threads operates and data processing is 
done. Processors do work on input tuples like aggregation, 
window operations, filtering. 
 
Output buffer receives events once events are processed by 
processing engine. One or more output adapter threads 
operate on output events from buffer and do required 
processing. 
 
DSL is used to provide query capability. Internal DSL is 
implemented as Fluent Interface. Following is example of 
Fluent Interface. 
 
 
SelectQuery query = new SelectQuery(“StreamID”); 
query 
 .where("Code").equal("IBM") 
 .and("Price").greaterThan(500); 
 
3. Join Queries 
 
This paper specifically focuses on combining or joining two 
streams. For more details of architecture please refer 
previous papers on Lightening CEP. 
 
3.1 Join Queries 
 
User can define simple Join queries on stream. Join queries 
are defined on two different streams with some common data. 
Blow code query illustrates a JOIN of two data streams. First 

stream is for stock orders, and second is for the resulting 
stock trades. Output of query is a stream containing all 
Orders matched by a Trade within one second of the Order 
being placed. The output stream is sorted by timestamp, in 
this case, the timestamp from the Orders stream. 

 
FROM Orders  

window 1 sec 
JOIN Trades  
ON Orders.orderId = Trades.orderId 

SELECT Orders.TimeStamp, Orders.orderId, 
Orders.ticker,  

 Orders.amount, Trade.amount  
into DataStream 
 
3.2 Building Query Pipeline 
 
Building query pipeline for Join requires two considerations. 
First is how streams are joined and second consideration is 
how events are stored for expiry. Traditional CEP systems 
used Queues for inter-thread communication. Queues easiest 
data structure available out of box their performance 
degrades under heavy load. They also traditional data store 
like database creates bottleneck as they are slow. 
 
Lightening uses multiple data structure for query join. It 
builds inverted index of events in memory. When event in 
stream arrives it is matched against inverted index of other 
stream and output event is generated. Next session discuss 
detailed design of Join pipeline.  
 
4. Design 
 
Figure 3 shows query pipline for Join Query for two streams. 
 

 
Figure 3: Join Query Pipeline 

 
We will discuss main components in details in following sub 
sections 
 
4.1 Input and Filter 
 
Producer pulls events from source and put is input junction. 
Filter filters events based on filter condition in query. If 
condition matches events are sent to Window junction. 
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4.2 Window 
 
Window Processor persist events to Event Store for future 
use. Event store is low latency store which can read and write 
millions of events per second. Event identifier is also put in 
Expiry Queue. Expiry queue is lock fee queue which holds 
events for expiry. 
 
Expiry Processor pulls event ID from Expiry Queue and 
checks it for expiry. If event is expired it added to window 
junction and removed from event store. 
 
4.3 Join 
 
Join processor joins two streams when event arrives. Figure 4 
shows details of join processor. 
 

 
Figure 4: Two stage pipeline 

 
Join Processor from each stream maintains inverted index for 
all events. Inverted index maintains ID’s for all events for 
each value. When new invent arrives Join Processor for 
Stream 1 it adds ID of event in index. This new event is sent 
to Join Processor from Stream 2 which joins events with all 
matching events in its index and generate output event in Join 
junction. 
For joining events all ID’s are retrieved from inverted index 
based on join value. For each ID, event is retrieved from 
Event Store and join event is created. 
 
4.3 Window 
 
Following example shows how inverted index is used. 
 
Stream definition is shown below and join query is executed 
on Code and Price columns. 
 
StockStream {Code, Price, Quanity} 
 
Table 1 shows inverted index for Code column and Table 2 
shows inverted index for Price column. 

Table 1: Code Inverted Index 
 Value Event ID 
IBM 23, 53, 35, 67, 34,.. 
Infosys 34, 76, 98, 56, 89 

  
Table 2: Price Inverted Index 

 Value Event ID 
200 23, 76, 98, 67, 34,.. 
300 34, 53, 35, 56, 89,.. 

 
For joining events from two streams, index for each value is 
retrieved and common events from multiple indexes are 
selected. 
 
When following events arrives in stream, indexed ID’s for 
Code “IBM” and indexed ID’s for price “200” are retrieved. 
 
StockEvent {IBM, 200, 50} 
 
Values from each index is retrieved 
 
IBM Index ID’s: 23, 53, 35, 67, 34 
200 Index ID’s: 23, 76, 98, 67, 34 
 
Intersection of two indexes is matching events 
 
Join Event ID’s: 23, 67, 34 
 
5. Conclusion and Future Work 
 
In this paper we have discussed how system can be designed 
for joining events from two streams. Inverted index provides 
efficient way of joining two streams as events are not 
retrieved from Event Store. 
 
When we have multiple join column finding intersection of 
multiple arrays is big task when we have millions of events. 
We can offload this work to GPU which can execute data 
parallel algorithm and give faster result. 
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