
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Lightning CEP - Joining on High Velocity Stream

Vikas Kale1, Kishor Shedge2

1Sir Visvesvaraya Institute of Technology, Chincholi, Nashik, 422101, India
2Sir Visvesvaraya Institute of Technology, Chincholi, Nashik, 422101, India

Abstract: With Internet of Things number of users and devices connected to internet is growing exponentially. Stream processing and

CEP systems are designed to support class of applications which requires fast and timely analysis of high volume data streams.

Complex event processing, or CEP, is event/stream processing that combines data from multiple sources to infer events or patterns that

suggest more complicated circumstances. In this paper we describe how we implemented join operation on high velocity streams for

Lightning- High Performance & Low Latency Complex Event Processor. We will discuss how inverted index and other methods can

help in improving performance of system.

Keywords: CEP, Complex Event Processing, Stream Processing

1. Introduction

With Internet of Things number of users and devices
connected to internet is growing exponentially. Each
connected device and its user generates lot of data which
organizations want to analyze and use for their businesses.
Generated data can be system logs, user activity, sensor
reading and transactions in financial systems etc. Traditional
systems stores data in RDMS and they use query language
like SQL to retrieve required data for business use. BIG or
internet scale data is very high volume of data which is in
Peta Bytes. Database systems are not able to handle BIG data
so Hadoop like batch processing are evolved to process BIG
data and they provide offline data processing capability.

Stream processing systems support a different class of
applications which continuously consumes and process data
while continuously producing results. Touple is input data
element and a continuous flow of touples is called streams.
Examples of streams include user-click, event logs, network
traffic, readings from sensor (GPS location, traffic
movement, temperature), and various other data feeds.
Stream processing systems are used to provide content to
user and help organization to make better and faster
decisions. Users of the content based system want’s real-time
information about surrounding e.g. news. Enterprise or
organization wants real-time information from their system to
detect intrusion, analyze fraud, analyze social media trends
etc. Many open source and commercial stream processing
systems are evolved and they provide basic infrastructure for
stream processing.

Stream processing applications have very different
requirements than those of batch processing applications.
Order of data receipt impacts result of system. So stream
processing applications are temporally sensitive. So they are
generally time-critical because their use is promptness with
which results are produced. Systems which find network
intrusions or credit cards fraud patterns should respond
quickly to an observed threat. Some other examples of stream
applications include real-time video processing, automated
stock trading, geo-spatial trajectory modification and vital-
signs monitoring. Results produced by such applications are
often urgent and they require immediate action. Importance
and applicability rapidly decrease if result of these

applications becomes more and more delayed. Best example
of this is intrusion detection systems. If organization is able
to identify intrusion detection and its patterns they will be
able to defend their system against attack. In financial system
like stock trading if firm is able to identify stock trends
before others they will be able to gain more profit. In time-
critical stream processing, it is important to minimize the
average latency of the continuously emitted results instead of
throughput. While stream applications which are not time-
critical process as large a stream as possible with maximizing
throughput.

Complex event processing, or CEP, is subset of event/stream
processing which combines data from multiple sources. CEP
infers events or patterns from multiple sources that suggest
more complicated circumstances. While Stream processing
system consider each event separately, CEP systems consider
complex event patterns that considers the multiple and
related events. Aim of this papers to describe how we
designed Join processing elements which are critical to CEP.

2. Architecture

CEP combines data from multiple sources and finds events or
patterns that related to complicated circumstances. Main
difference between traditional DBMS and CEP systems is
tradition DBMS system store data and then process then
using queries. CPE systems do not store data they processes
data as it is available. Following Figure 1 shows difference
between CEP system and database.

Figure 1: DBMS VS CEP Engine

Figure 2 show architecture of Lightening CEP. It uses pull
model which pulls data from different sources and CEP
engine process that data. It will also use lock free data
structure for inter thread communication which is very fast
compared to traditional Queue.

Paper ID: NOV152423 1888

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 2: Lightning CEP Architecture

Input to CEP engine is Input adapter or receiver. It reads
events from event source and sends them to core engine for
processing. User can define custom Input Adapter which can
pull data from multiple sources like web feeds, user clicks,
queues, and log file etc.

Ring Buffer which provides lock free inter-thread
communication is used for communication between different
threads. Multiple buffers can be connected to each other to
form processing pipeline as shown in Figure 2 has input and
output ring buffers.

Queries can be defined by user as per requirement. Query
compiler parses queries provided by user and required
request processing pipeline of processing objects is created.
Query pipeline is like directed graph of Ring Buffers. On
each buffer multiple threads operates and data processing is
done. Processors do work on input tuples like aggregation,
window operations, filtering.

Output buffer receives events once events are processed by
processing engine. One or more output adapter threads
operate on output events from buffer and do required
processing.

DSL is used to provide query capability. Internal DSL is
implemented as Fluent Interface. Following is example of
Fluent Interface.

SelectQuery query = new SelectQuery(“StreamID”);
query
 .where("Code").equal("IBM")
 .and("Price").greaterThan(500);

3. Join Queries

This paper specifically focuses on combining or joining two
streams. For more details of architecture please refer
previous papers on Lightening CEP.

3.1 Join Queries

User can define simple Join queries on stream. Join queries
are defined on two different streams with some common data.
Blow code query illustrates a JOIN of two data streams. First

stream is for stock orders, and second is for the resulting
stock trades. Output of query is a stream containing all
Orders matched by a Trade within one second of the Order
being placed. The output stream is sorted by timestamp, in
this case, the timestamp from the Orders stream.

FROM Orders

window 1 sec
JOIN Trades
ON Orders.orderId = Trades.orderId

SELECT Orders.TimeStamp, Orders.orderId,
Orders.ticker,

 Orders.amount, Trade.amount
into DataStream

3.2 Building Query Pipeline

Building query pipeline for Join requires two considerations.
First is how streams are joined and second consideration is
how events are stored for expiry. Traditional CEP systems
used Queues for inter-thread communication. Queues easiest
data structure available out of box their performance
degrades under heavy load. They also traditional data store
like database creates bottleneck as they are slow.

Lightening uses multiple data structure for query join. It
builds inverted index of events in memory. When event in
stream arrives it is matched against inverted index of other
stream and output event is generated. Next session discuss
detailed design of Join pipeline.

4. Design

Figure 3 shows query pipline for Join Query for two streams.

Figure 3: Join Query Pipeline

We will discuss main components in details in following sub
sections

4.1 Input and Filter

Producer pulls events from source and put is input junction.
Filter filters events based on filter condition in query. If
condition matches events are sent to Window junction.

Paper ID: NOV152423 1889

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

4.2 Window

Window Processor persist events to Event Store for future
use. Event store is low latency store which can read and write
millions of events per second. Event identifier is also put in
Expiry Queue. Expiry queue is lock fee queue which holds
events for expiry.

Expiry Processor pulls event ID from Expiry Queue and
checks it for expiry. If event is expired it added to window
junction and removed from event store.

4.3 Join

Join processor joins two streams when event arrives. Figure 4
shows details of join processor.

Figure 4: Two stage pipeline

Join Processor from each stream maintains inverted index for
all events. Inverted index maintains ID’s for all events for
each value. When new invent arrives Join Processor for
Stream 1 it adds ID of event in index. This new event is sent
to Join Processor from Stream 2 which joins events with all
matching events in its index and generate output event in Join
junction.
For joining events all ID’s are retrieved from inverted index
based on join value. For each ID, event is retrieved from
Event Store and join event is created.

4.3 Window

Following example shows how inverted index is used.

Stream definition is shown below and join query is executed
on Code and Price columns.

StockStream {Code, Price, Quanity}

Table 1 shows inverted index for Code column and Table 2
shows inverted index for Price column.

Table 1: Code Inverted Index
 Value Event ID
IBM 23, 53, 35, 67, 34,..
Infosys 34, 76, 98, 56, 89

Table 2: Price Inverted Index

 Value Event ID
200 23, 76, 98, 67, 34,..
300 34, 53, 35, 56, 89,..

For joining events from two streams, index for each value is
retrieved and common events from multiple indexes are
selected.

When following events arrives in stream, indexed ID’s for
Code “IBM” and indexed ID’s for price “200” are retrieved.

StockEvent {IBM, 200, 50}

Values from each index is retrieved

IBM Index ID’s: 23, 53, 35, 67, 34
200 Index ID’s: 23, 76, 98, 67, 34

Intersection of two indexes is matching events

Join Event ID’s: 23, 67, 34

5. Conclusion and Future Work

In this paper we have discussed how system can be designed
for joining events from two streams. Inverted index provides
efficient way of joining two streams as events are not
retrieved from Event Store.

When we have multiple join column finding intersection of
multiple arrays is big task when we have millions of events.
We can offload this work to GPU which can execute data
parallel algorithm and give faster result.

References

[1] Vikas Kale, Kishor Shedge , Lightning CEP - High

Performance & Low Latency Complex Event Processor
– Volume 3 Issue 11 November 2014

[2] David Luckham & Roy Schulte, Event Processing
Glossary – Version 2.0 ,
http://www.complexevents.com/2011/08/23/event-
processing-glossary-version-2/, [Online; accessed on
12/9/2014]

[3] David Luckham & Roy Schulte, Event Processing
Glossary – Version 2.0 ,
http://www.complexevents.com/2011/08/23/event-
processing-glossary-version-2/, [Online; accessed on
12/9/2014]

[4] Jeffrey Dean and Sanjay Ghemawat, MapReduce:
Simplified Data Processing on Large Clusters, Google,
Inc.

Paper ID: NOV152423 1890

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

[5] Storm Distributed and fault-tolerant realtime
computation. https://storm.apache.org/, [Online;
accessed on 12/9/2014]

[6] S4 distributed stream computing platform. URL
http://incubator.apache.org/s4/, [Online; accessed on
12/9/2014]

[7] Apache Samza is a distributed stream processing
framework. http://samza.incubator.apache.org/, [Online;
accessed on 12/9/2014]

[8] Drools Business Rules Management System (BRMS).
http://www.drools.org/, [Online; accessed on 12/9/2014]

[9] Daniel J. Abadi, Don Carney, et al, Aurora: a new model
and architecture for data stream management. Springer-
Verlag 2003

[10] Understanding Java Garbage Collection.
http://www.cubrid.org/blog/dev-platform/understanding-
java-garbage-collection/, [Online; accessed on
12/9/2014]

[11] Reducing Garbage-Collection Pause Time.
http://javabook.compuware.com/content/memory/reduce
-garbage-collection-pause-time.aspx, [Online; accessed
on 12/9/2014]

[12] Controlling GC pauses with the GarbageFirst Collector.
http://blog.mgm-tp.com/2014/04/controlling-gc-pauses-
with-g1-collector/, [Online; accessed on 12/9/2014]

[13] How to tame java GC pauses? Surviving 16GiB heap
and greater. http://java.dzone.com/articles/how-tame-
java-gc-pauses, [Online; accessed on 12/9/2014]

[14] Understanding GC pauses in JVM, HotSpot's minor GC.
http://blog.ragozin.info/2011/06/understanding-gc-
pauses-in-jvm-hotspots.html Accessed on [Online;
accessed on 12/9/2014]

[15] Trisha Gee & Michael Barker / LMAX , The Disruptor -
A Beginners Guide to Hardcore Concurrency, JAX
conference 2011 London [Online; accessed on
12/9/2014]

[16] Trisha Gee, Dissecting the Disruptor: What's so special
about a ring buffer?
http://jaa.dzone.com/articles/dissecting-disruptor-whats-
so, [Online; accessed on 12/9/2014]

[17] Martin Fowler, The LMAX Architecture.
http://martinfowler.com/articles/lmax.html , [Online;
accessed on 12/9/2014]

[18] Daniel J. Abadi, Yanif Ahmad, et al. The Design of the
Borealis Stream Processing Engine. 2005 CIDR
Conference

[19] D. Abadi, D. Carney, U. Cetintemel, et al. Aurora: A
Data Stream Management System. 2003 ACM

[20] Terence Parr, The Definitive ANTLR Reference. The
Pragmatic Programmer Publication ISBN-10: 0-
9787392-5-6

[21] Esper Reference, By Esper Team and EsperTech Inc.
[22] Arun Mathew, Benchmarking of Complex Event

Processing Engine – Esper.
[23] Leonardo Neumeyer, Bruce Robbins, Anish Nair, Anand

Kesari Yahoo Labs. S4: Distributed Stream Computing
Platform. 2010 IEEE International Conference on Data
Mining Workshops

[24] Sriskandarajah Suhothayan, Isuru Loku Narangoda,
Subash Chaturanga. Siddhi: A Second Look at Complex
Event Processing Architectures. November 2011 ACM
978-1-4503-1123-6/11/11

[25] Kristian A. Nagy, Distributing Complex Event
Detection. June 2012

[26] D. Abadi, Y. Ahmad, et al. The design of the borealis
stream processing engine. In Second Biennial
Conference on Innovative Data Systems Research
(CIDR 2005), Asilomar, CA, pages 277–289, 2005.

[27] D. Abadi, D. Carney, et al. Aurora: a data stream
management system. In Proceedings of the 2003 ACM
SIGMOD international conference on Management of
data, pages 666–666, 2003.

[28] M. Aguilera, R. Strom, et al. Matching events in a
content-based subscription system. In Proceedings of the
eighteenth annual ACM symposium on Principles of
distributed computing, pages 53–61, 1999.

[29] D. Arvind, A. Arasu, et al. STREAM: the stanford
stream data manager. In IEEE Data Engineering
Bulletin, 2003.

[30] Aurora project page.
http://www.cs.brown.edu/research/aurora/. [Online;
accessed on 12/9/2014]

[31] The borealis project.
http://www.cs.brown.edu/research/borealis/ public/.
[Online; accessed on 12/9/2014]

[32] M. Cammert, C. Heinz, et al. Pipes: A multi-threaded
publish-subscribe architecture for continuous queries
over streaming data sources. Technical report, Citeseer,
2003.

[33] S. Chandrasekaran, O. Cooper, et al. TelegraphCQ:
continuous dataflow processing. In Proceedings of the
2003 ACM SIGMOD international conference on
Management of data, pages 668–668, 2003.

[34] GIANPAOLO CUGOLA and ALESSANDRO
MARGARA, Processing Flows of Information: From
Data Stream to Complex Event Processing. ACM
Computing Surveys, 2011

[35] S. Rizvi. Complex event processing beyond active
databases: Streams and uncertainties. Master’s thesis,
EECS Department, University of California, Berkeley,
Dec 2005

[36] E. Wu, Y. Diao, and S. Rizvi. High-performance
complex event processing over streams. In SIGMOD
’06: Proceedings of the 2006 ACM SIGMOD
international conference on Management of data, pages
407–418, New York, NY, USA, 2006. ACM. URL:
http://doi.acm.org/10.1145/1142473.1142520.

[37] Martin Thompson, Dave Farley, Michael Barker,
Patricia Gee, Andrew Stewart. Disruptor High
performance alternative to bounded queues for
exchanging data between concurrent threads. May-2011

Author Profile

Vikas Kale received the B.E. degree in Electronics
Engineering from Pune University in 2005. He now studies
M.E. computes in Pune University.

Paper ID: NOV152423 1891

