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Abstract: Number of users and devices connected to internet is growing exponentially. Each of these device and user generate lot of 

data which organizations want to analyze and use. There are many businesses which requires real-time or near real-time processing of 

data for faster decision making. Stream processing systems are designed to support class of applications which requires fast and timely 

analysis of high volume data streams. Complex event processing, or CEP, is event/stream processing that combines data from multiple 

sources to infer events or patterns that suggest more complicated circumstances. In this paper we describe how we can design filter and 

window operations for Lightning - High Performance & Low Latency Complex Event Processor.  
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1. Introduction 
 
With Internet of Things number of users and devices 
connected to internet is growing exponentially. Each 
connected device and its user generates lot of data which 
organizations want to analyze and use for their businesses. 
Generated data can be system logs, user activity, sensor 
reading and transactions in financial systems etc. Traditional 
systems stores data in RDMS and they use query language 
like SQL to retrieve required data for business use. BIG or 
internet scale data is very high volume of data which is in 
Peta Bytes. Database systems are not able to handle BIG data 
so Hadoop like batch processing are evolved to process BIG 
data and they provide offline data processing capability. 
 
Stream processing systems support a different class of 
applications which continuously consumes and process data 
while continuously producing results. Touple is input data 
element and a continuous flow of touples is called streams. 
Examples of streams include user-click, event logs, network 
traffic, readings from sensor (GPS location, traffic 
movement, temperature), and various other data feeds. 
Stream processing systems are used to provide content to 
user and help organization to make better and faster 
decisions. Users of the content based system wants‟ real-time 
information about surrounding e.g. news. Enterprise or 
organization wants real-time information from their system to 
detect intrusion, analyze fraud, analyze social media trends 
etc. Many open source and commercial stream processing 
systems are evolved and they provide basic infrastructure for 
stream processing. 
 
Stream processing applications have very different 
requirements than those of batch processing applications. 
Order of data receipt impacts result of system. So stream 
processing applications are temporally sensitive. So they are 
generally time-critical because their use is promptness with 
which results are produced. Systems which find network 
intrusions or credit cards fraud patterns should respond 
quickly to an observed threat. Some other examples of stream 
applications include real-time video processing, automated 

stock trading, geo-spatial trajectory modification and vital-
signs monitoring. Results produced by such applications are 
often urgent and they require immediate action. Importance 
and applicability rapidly decrease if result of these 
applications becomes more and more delayed. Best example 
of this is intrusion detection systems. If organization is able 
to identify intrusion detection and its patterns they will be 
able to defend their system against attack. In financial system 
like stock trading if firm is able to identify stock trends 
before others they will be able to gain more profit. In time-
critical stream processing, it is important to minimize the 
average latency of the continuously emitted results instead of 
throughput. While stream applications which are not time-
critical process as large a stream as possible with maximizing 
throughput. 
 
Complex event processing, or CEP, is subset of event/stream 
processing which combines data from multiple sources. CEP 
infers events or patterns from multiple sources that suggest 
more complicated circumstances. While Stream processing 
system consider each event separately, CEP systems consider 
complex event patterns that considers the multiple and 
related events.  
Aim of this papers to describe how we can design Stream 
Processing system. In this paper we focus on how we can 
design Filter and Window processing elements which are 
critical to CEP.  
 
2. Architecture 
 
Complex event processing, or CEP, is event or stream 
processing which combines data from multiple sources to 
find events or patterns that suggest more complicated 
circumstances. Following is difference between traditional 
DBMS and CEP systems. Tradition DBMS system store data 
before processing CPE systems processes data as it is 
available. Figure 1 shows comparison between database and 
CEP system. 
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Figure 1: DBMS VS CEP Engine 

 
Proposed “Lightning CEP” Architecture is shown in Figure 
2. Lightning will use pull model which pulls data from 
different sources and send it to CEP engine. It will also use 
Disruptor for inter thread communication which is very fast 
compared to traditional Queue. 
 

 
Figure 2: Lightning CEP Architecture 

 
Lightning works on Pull architecture instead of push as used 
by other CEP like Siddhi or Esper. Input adapter or receiver 
can read data from multiple sources. Data is event and it is 
sent to CEP core engine for processing. It can read data from 
multiple sources like queues, web feeds, file system etc. 
 
Ring Buffer is used for inter thread communication. Multiple 
ring buffers can be present in system and architecture shown 
in Figure 2 has input and output ring buffers.  
 
Event processing logic resides between input and out ring 
buffer. User can define queries using admin interface. Query 
processing engine parses queries and creates required request 
processing hierarchy of objects like pipeline. Each pipeline is 
like directed graph of Ring Buffers on which multiple threads 
operates and does data processing. Operations performed on 
input tuples are like aggregation, window operations, 
filtering. 
 
After processing engine is done with processing of data it 
emits output events to output ring buffer. One or more output 
adapter threads operate on output events from buffer and do 
required processing. 
 
Lightening uses internal DSL to provide query capability. It 
implements Internal DSL as Fluent Interface. Following is 
example of Fluent Interface. 
 
SelectQuery query = new SelectQuery(“StreamID”); 
query 
 .where("Code").equal("IBM") 

 .and("Price").greaterThan(500); 
 
3. Design 
 

3.1 Stream 

 
Touple is input data element and a continuous flow of touples 
is called streams. Since stream processing is processing data 
before storage events are not stored unless it is required. 
Following is example of StockStream stream. Each touple in 
Stream will has following properties. 
 
StockStream {Code, Price, Quanity} 
 
When streams are defines user can define event source for 
queries. Event source pull data from external systems and 
puts in CEP. 
 
3.2 Stream and Queries 

 
User can define simple Filter, Window and Join queries on 
stream. Filter queries can filter events based on different 
conditions. Following is example of simple filter condition 
on Stock Stream 
 
from StockStream where Code=”IBM” and Price>500 
Select *  
Insert into StockPickStream 
 
User can also define window queries which will help in 
aggregating events in small window if time. 
 
from StockStream  

where code = „IBM‟ and price >500  
Window 0.5 sec 

Select Code, avg(price)  
Group by code 

Select * 
Insert into StockPickStream 
 
3.3 Building Query Pipeline 

 
Traditional CEP systems used Queues for inter-thread 
communication. Queues easiest data structure available out 
of box their performance degrades under heavy load. 
 
In order to put some data on a queue, we need to write to that 
queue. Also to take data out of the queue, we need to 
modify/write to the queue to removal the required data. This 
is write contention - where we have more than one client may 
need to write (add or remove) to the same data structure. 
Process requests from multiple clients a queue often uses 
locks. When a lock is used, it can cause a context switch to 
the kernel. When context switch happens the processor 
involved is likely to lose the data in its caches. 
 
Lightening uses Disruptor data structure for inter-thread 
communication. When user defines stream, stream junctions 
are created. As shown in Figure 3 Stream junctions are 
nothing but circular Ring Buffer where multiple threads can 
read and write without blocking other thread. It results in 
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lock fee operation where one thread can write events to 
junction while other thread can read and execute queries on 
events. 
 

 
Figure 3: Single Producer multi consumer junction 

 
Based on query defines by user system creates multiple 
junctions and assigns worker thread to each junction. Stream 
Processors executes logic based on user query and transfer 
events from one junction to other junction to create pipeline. 
 
3.4 Filter Queries 

 
We will see how filter queries are executed. Following is 
Select query on StockStream. It selects all events with code 
“IBM” and price greater than 500. All selected events are 
inserted in to stock pick stream. 
 
from StockStream where Code=”IBM” and Price>500 
select * 
Insert into StockPickStream 
 
Figure 4 shows simple filter pipeline with filter and output 
selector. 
 

 
Figure 4: Simple Filter Pipeline 

 
Query executor contains Filter and output selector. Filter 
executes where clause conditions. Output selector selects 
column specified in select statement. 
 
In output junction system calls output event handler 
registered by user to generate real life event. 
 
3.5 Multi Stage Pipeline 

 
Single stage pipe line is fast and can process lots of events. 
To increase throughput we can create multi-stage pipeline. 
Multiple input junctions can be used to pull events from 
source and filter them. After filtering events both stages adds 
data to same output junction. Figure 5 show two stage 

pipeline. 
 

 
Figure 5: Two stage pipeline 

 
We can almost double throughput by adding second stage in 
pipeline.  
 
3.6 Multiple Filter Queries 

 
User can define multiple filter queries on single stream. 
Lightening uses same input junction for two queries while 
create different output junctions. Figure 6 shows multi 
queries pipeline. 
 

 
Figure 5: Multiple Queries on Same Stream 

 
3.7 Window Queries 

 
Window queries are used when user want to aggregates 
events for specific time window. Following window query on 
stock stream calculates average price of “IBM” stock over 
0.5 sec. 
 
from StockStream  

where code = „IBM‟ and price >500  
Window 0.5 sec 

Select Code, avg(price)  
Group by code 

Select * 
Insert into StockPickStream 
 
Figure 7 show pipeline for window query. This pipeline uses 
three junctions. Producer puts data in input junction. Query 
executor executes filter query on input events and transfers 
matching events to Window Junction. 
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Figure 7: Window Query Execution 

 
In window junction there are two processors. Window 
processor schedules events for expiry. Expiry events are 
placed in low latency off heap data structure like Chronicle, 
Ring Buffer or traditional data store like database based on 
expiry time. System allows user to select different data 
stores. 
 
Event Aggregator aggregates received events. All events new 
and expired are processed by aggregator and it produces 
output events in output junction. 
 
Performance of window operation depends on various factors 
like data store and expiry time. For high velocity streams if 
expiry time is short traditional data store like database creates 
bottleneck as they are slow. Putting and retrieving events 
from tradition data store takes time and it increases latency. 
Event Expiry producer picks expired events and put into 
Window Junction. 
 
4. Implementation and Results 
 
We have done initial implementation of proposed system. 
Basic architecture is implemented which created data 
processing pipeline for query processing. Current 
implementation includes Input and Output adapters, Query 
compiler and engine.  

 
Benchmarking is done on Windows 7 machine running on 
“i7 2Ghz 2 Core 4 Thread” processor and 8GB RAM. Java 
version used is Java8. 

Table 1: Comparative throughput (in ops per sec) 

Pipeline Stage Time Min Events 
Processed 

1 Stage 10 3-4 Million 

2 Stage 10 7-8 Million 
 
As we can see above table implemented system provides high 
throughput for filter queries.  
 
5. Conclusion and Future Work 
 
We have discussed how we can build stream processing 
engine with high throughput and low latency. This is just 
starting point of complete implementation of overall system. 

User can define input and output adapters. User can define 
filter and window queries over stream. Future work is to 
implement Join operation over window stream. 
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