
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Lightning CEP - Designing Filter and Window
Operations

Vikas Kale

1
, Kishor Shedge

2

1Sir Visvesvaraya Institute of Technology, Chincholi, Nashik, 422101, India
2Sir Visvesvaraya Institute of Technology, Chincholi, Nashik, 422101, India

Abstract: Number of users and devices connected to internet is growing exponentially. Each of these device and user generate lot of

data which organizations want to analyze and use. There are many businesses which requires real-time or near real-time processing of

data for faster decision making. Stream processing systems are designed to support class of applications which requires fast and timely

analysis of high volume data streams. Complex event processing, or CEP, is event/stream processing that combines data from multiple

sources to infer events or patterns that suggest more complicated circumstances. In this paper we describe how we can design filter and

window operations for Lightning - High Performance & Low Latency Complex Event Processor.

Keywords: CEP, Complex Event Processing, Stream Processing

1. Introduction

With Internet of Things number of users and devices
connected to internet is growing exponentially. Each
connected device and its user generates lot of data which
organizations want to analyze and use for their businesses.
Generated data can be system logs, user activity, sensor
reading and transactions in financial systems etc. Traditional
systems stores data in RDMS and they use query language
like SQL to retrieve required data for business use. BIG or
internet scale data is very high volume of data which is in
Peta Bytes. Database systems are not able to handle BIG data
so Hadoop like batch processing are evolved to process BIG
data and they provide offline data processing capability.

Stream processing systems support a different class of
applications which continuously consumes and process data
while continuously producing results. Touple is input data
element and a continuous flow of touples is called streams.
Examples of streams include user-click, event logs, network
traffic, readings from sensor (GPS location, traffic
movement, temperature), and various other data feeds.
Stream processing systems are used to provide content to
user and help organization to make better and faster
decisions. Users of the content based system wants‟ real-time
information about surrounding e.g. news. Enterprise or
organization wants real-time information from their system to
detect intrusion, analyze fraud, analyze social media trends
etc. Many open source and commercial stream processing
systems are evolved and they provide basic infrastructure for
stream processing.

Stream processing applications have very different
requirements than those of batch processing applications.
Order of data receipt impacts result of system. So stream
processing applications are temporally sensitive. So they are
generally time-critical because their use is promptness with
which results are produced. Systems which find network
intrusions or credit cards fraud patterns should respond
quickly to an observed threat. Some other examples of stream
applications include real-time video processing, automated

stock trading, geo-spatial trajectory modification and vital-
signs monitoring. Results produced by such applications are
often urgent and they require immediate action. Importance
and applicability rapidly decrease if result of these
applications becomes more and more delayed. Best example
of this is intrusion detection systems. If organization is able
to identify intrusion detection and its patterns they will be
able to defend their system against attack. In financial system
like stock trading if firm is able to identify stock trends
before others they will be able to gain more profit. In time-
critical stream processing, it is important to minimize the
average latency of the continuously emitted results instead of
throughput. While stream applications which are not time-
critical process as large a stream as possible with maximizing
throughput.

Complex event processing, or CEP, is subset of event/stream
processing which combines data from multiple sources. CEP
infers events or patterns from multiple sources that suggest
more complicated circumstances. While Stream processing
system consider each event separately, CEP systems consider
complex event patterns that considers the multiple and
related events.
Aim of this papers to describe how we can design Stream
Processing system. In this paper we focus on how we can
design Filter and Window processing elements which are
critical to CEP.

2. Architecture

Complex event processing, or CEP, is event or stream
processing which combines data from multiple sources to
find events or patterns that suggest more complicated
circumstances. Following is difference between traditional
DBMS and CEP systems. Tradition DBMS system store data
before processing CPE systems processes data as it is
available. Figure 1 shows comparison between database and
CEP system.

Paper ID: NOV152422 1883

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 1: DBMS VS CEP Engine

Proposed “Lightning CEP” Architecture is shown in Figure
2. Lightning will use pull model which pulls data from
different sources and send it to CEP engine. It will also use
Disruptor for inter thread communication which is very fast
compared to traditional Queue.

Figure 2: Lightning CEP Architecture

Lightning works on Pull architecture instead of push as used
by other CEP like Siddhi or Esper. Input adapter or receiver
can read data from multiple sources. Data is event and it is
sent to CEP core engine for processing. It can read data from
multiple sources like queues, web feeds, file system etc.

Ring Buffer is used for inter thread communication. Multiple
ring buffers can be present in system and architecture shown
in Figure 2 has input and output ring buffers.

Event processing logic resides between input and out ring
buffer. User can define queries using admin interface. Query
processing engine parses queries and creates required request
processing hierarchy of objects like pipeline. Each pipeline is
like directed graph of Ring Buffers on which multiple threads
operates and does data processing. Operations performed on
input tuples are like aggregation, window operations,
filtering.

After processing engine is done with processing of data it
emits output events to output ring buffer. One or more output
adapter threads operate on output events from buffer and do
required processing.

Lightening uses internal DSL to provide query capability. It
implements Internal DSL as Fluent Interface. Following is
example of Fluent Interface.

SelectQuery query = new SelectQuery(“StreamID”);
query
 .where("Code").equal("IBM")

 .and("Price").greaterThan(500);

3. Design

3.1 Stream

Touple is input data element and a continuous flow of touples
is called streams. Since stream processing is processing data
before storage events are not stored unless it is required.
Following is example of StockStream stream. Each touple in
Stream will has following properties.

StockStream {Code, Price, Quanity}

When streams are defines user can define event source for
queries. Event source pull data from external systems and
puts in CEP.

3.2 Stream and Queries

User can define simple Filter, Window and Join queries on
stream. Filter queries can filter events based on different
conditions. Following is example of simple filter condition
on Stock Stream

from StockStream where Code=”IBM” and Price>500
Select *
Insert into StockPickStream

User can also define window queries which will help in
aggregating events in small window if time.

from StockStream

where code = „IBM‟ and price >500
Window 0.5 sec

Select Code, avg(price)
Group by code

Select *
Insert into StockPickStream

3.3 Building Query Pipeline

Traditional CEP systems used Queues for inter-thread
communication. Queues easiest data structure available out
of box their performance degrades under heavy load.

In order to put some data on a queue, we need to write to that
queue. Also to take data out of the queue, we need to
modify/write to the queue to removal the required data. This
is write contention - where we have more than one client may
need to write (add or remove) to the same data structure.
Process requests from multiple clients a queue often uses
locks. When a lock is used, it can cause a context switch to
the kernel. When context switch happens the processor
involved is likely to lose the data in its caches.

Lightening uses Disruptor data structure for inter-thread
communication. When user defines stream, stream junctions
are created. As shown in Figure 3 Stream junctions are
nothing but circular Ring Buffer where multiple threads can
read and write without blocking other thread. It results in

Paper ID: NOV152422 1884

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

lock fee operation where one thread can write events to
junction while other thread can read and execute queries on
events.

Figure 3: Single Producer multi consumer junction

Based on query defines by user system creates multiple
junctions and assigns worker thread to each junction. Stream
Processors executes logic based on user query and transfer
events from one junction to other junction to create pipeline.

3.4 Filter Queries

We will see how filter queries are executed. Following is
Select query on StockStream. It selects all events with code
“IBM” and price greater than 500. All selected events are
inserted in to stock pick stream.

from StockStream where Code=”IBM” and Price>500
select *
Insert into StockPickStream

Figure 4 shows simple filter pipeline with filter and output
selector.

Figure 4: Simple Filter Pipeline

Query executor contains Filter and output selector. Filter
executes where clause conditions. Output selector selects
column specified in select statement.

In output junction system calls output event handler
registered by user to generate real life event.

3.5 Multi Stage Pipeline

Single stage pipe line is fast and can process lots of events.
To increase throughput we can create multi-stage pipeline.
Multiple input junctions can be used to pull events from
source and filter them. After filtering events both stages adds
data to same output junction. Figure 5 show two stage

pipeline.

Figure 5: Two stage pipeline

We can almost double throughput by adding second stage in
pipeline.

3.6 Multiple Filter Queries

User can define multiple filter queries on single stream.
Lightening uses same input junction for two queries while
create different output junctions. Figure 6 shows multi
queries pipeline.

Figure 5: Multiple Queries on Same Stream

3.7 Window Queries

Window queries are used when user want to aggregates
events for specific time window. Following window query on
stock stream calculates average price of “IBM” stock over
0.5 sec.

from StockStream

where code = „IBM‟ and price >500
Window 0.5 sec

Select Code, avg(price)
Group by code

Select *
Insert into StockPickStream

Figure 7 show pipeline for window query. This pipeline uses
three junctions. Producer puts data in input junction. Query
executor executes filter query on input events and transfers
matching events to Window Junction.

Paper ID: NOV152422 1885

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 7: Window Query Execution

In window junction there are two processors. Window
processor schedules events for expiry. Expiry events are
placed in low latency off heap data structure like Chronicle,
Ring Buffer or traditional data store like database based on
expiry time. System allows user to select different data
stores.

Event Aggregator aggregates received events. All events new
and expired are processed by aggregator and it produces
output events in output junction.

Performance of window operation depends on various factors
like data store and expiry time. For high velocity streams if
expiry time is short traditional data store like database creates
bottleneck as they are slow. Putting and retrieving events
from tradition data store takes time and it increases latency.
Event Expiry producer picks expired events and put into
Window Junction.

4. Implementation and Results

We have done initial implementation of proposed system.
Basic architecture is implemented which created data
processing pipeline for query processing. Current
implementation includes Input and Output adapters, Query
compiler and engine.

Benchmarking is done on Windows 7 machine running on
“i7 2Ghz 2 Core 4 Thread” processor and 8GB RAM. Java
version used is Java8.

Table 1: Comparative throughput (in ops per sec)

Pipeline Stage Time Min Events
Processed

1 Stage 10 3-4 Million

2 Stage 10 7-8 Million

As we can see above table implemented system provides high
throughput for filter queries.

5. Conclusion and Future Work

We have discussed how we can build stream processing
engine with high throughput and low latency. This is just
starting point of complete implementation of overall system.

User can define input and output adapters. User can define
filter and window queries over stream. Future work is to
implement Join operation over window stream.

References

[1] David Luckham & Roy Schulte, Event Processing
Glossary – Version 2.0 ,
http://www.complexevents.com/2011/08/23/event-
processing-glossary-version-2/, [Online; accessed on
12/9/2014]

[2] David Luckham & Roy Schulte, Event Processing
Glossary – Version 2.0 ,
http://www.complexevents.com/2011/08/23/event-
processing-glossary-version-2/, [Online; accessed on
12/9/2014]

[3] Jeffrey Dean and Sanjay Ghemawat, MapReduce:
Simplified Data Processing on Large Clusters, Google,
Inc.

[4] Storm Distributed and fault-tolerant realtime
computation. https://storm.apache.org/, [Online;
accessed on 12/9/2014]

[5] S4 distributed stream computing platform. URL
http://incubator.apache.org/s4/, [Online; accessed on
12/9/2014]

[6] Apache Samza is a distributed stream processing
framework. http://samza.incubator.apache.org/, [Online;
accessed on 12/9/2014]

[7] Drools Business Rules Management System (BRMS).
http://www.drools.org/, [Online; accessed on 12/9/2014]

[8] Daniel J. Abadi, Don Carney, et al, Aurora: a new model
and architecture for data stream management. Springer-
Verlag 2003

[9] Understanding Java Garbage Collection.
http://www.cubrid.org/blog/dev-platform/understanding-
java-garbage-collection/, [Online; accessed on
12/9/2014]

[10] Reducing Garbage-Collection Pause Time.
http://javabook.compuware.com/content/memory/reduce
-garbage-collection-pause-time.aspx, [Online; accessed
on 12/9/2014]

[11] Controlling GC pauses with the GarbageFirst Collector.
http://blog.mgm-tp.com/2014/04/controlling-gc-pauses-
with-g1-collector/, [Online; accessed on 12/9/2014]

[12] How to tame java GC pauses? Surviving 16GiB heap
and greater. http://java.dzone.com/articles/how-tame-
java-gc-pauses, [Online; accessed on 12/9/2014]

[13] Understanding GC pauses in JVM, HotSpot's minor GC.
http://blog.ragozin.info/2011/06/understanding-gc-
pauses-in-jvm-hotspots.html Accessed on [Online;
accessed on 12/9/2014]

[14] Trisha Gee & Michael Barker / LMAX , The Disruptor -
A Beginners Guide to Hardcore Concurrency, JAX
conference 2011 London [Online; accessed on
12/9/2014]

[15] Trisha Gee, Dissecting the Disruptor: What's so special
about a ring buffer?
http://jaa.dzone.com/articles/dissecting-disruptor-whats-
so, [Online; accessed on 12/9/2014]

Paper ID: NOV152422 1886

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[16] Martin Fowler , The LMAX Architecture.
http://martinfowler.com/articles/lmax.html , [Online;
accessed on 12/9/2014]

[17] Daniel J. Abadi, Yanif Ahmad, et al . The Design of the
Borealis Stream Processing Engine,. 2005 CIDR
Conference

[18] D. Abadi, D. Carney, U. Cetintemel, et al. Aurora: A
Data Stream Management System. 2003 ACM

[19] Terence Parr, The Definitive ANTLR Reference. The
Pragmatic Programmer Publication ISBN-10: 0-
9787392-5-6

[20] Esper Reference, By Esper Team and EsperTech Inc.
[21] Arun Mathew, Benchmarking of Complex Event

Processing Engine – Esper.
[22] Leonardo Neumeyer, Bruce Robbins, Anish Nair, Anand

Kesari Yahoo Labs. S4: Distributed Stream Computing
Platform. 2010 IEEE International Conference on Data
Mining Workshops

[23] Sriskandarajah Suhothayan, Isuru Loku Narangoda,
Subash Chaturanga . Siddhi: A Second Look at Complex
Event Processing Architectures. November 2011 ACM
978-1-4503-1123-6/11/11

[24] Kristian A. Nagy, Distributing Complex Event
Detection. June 2012

[25] D. Abadi, Y. Ahmad, et al. The design of the borealis
stream processing engine. In Second Biennial
Conference on Innovative Data Systems Research
(CIDR 2005), Asilomar, CA, pages 277–289, 2005.

[26] D. Abadi, D. Carney, et al. Aurora: a data stream
management system. In Proceedings of the 2003 ACM
SIGMOD international conference on Management of
data, pages 666–666, 2003.

[27] M. Aguilera, R. Strom, et al. Matching events in a
content-based subscription system. In Proceedings of the
eighteenth annual ACM symposium on Principles of
distributed computing, pages 53–61, 1999.

[28] D. Arvind, A. Arasu, et al. STREAM: the stanford
stream data manager. In IEEE Data Engineering
Bulletin, 2003.

[29] Aurora project page.
http://www.cs.brown.edu/research/aurora/. [Online;
accessed on 12/9/2014]

[30] The borealis project.
http://www.cs.brown.edu/research/borealis/ public/.
[Online; accessed on 12/9/2014]

[31] M. Cammert, C. Heinz, et al. Pipes: A multi-threaded
publish-subscribe architecture for continuous queries
over streaming data sources. Technical report, Citeseer,
2003.

[32] S. Chandrasekaran, O. Cooper, et al. TelegraphCQ:
continuous dataflow processing. In Proceedings of the
2003 ACM SIGMOD international conference on
Management of data, pages 668–668, 2003.

[33] GIANPAOLO CUGOLA and ALESSANDRO
MARGARA, Processing Flows of Information: From
Data Stream to Complex Event Processing. ACM
Computing Surveys, 2011

[34] S. Rizvi. Complex event processing beyond active
databases: Streams and uncertainties. Master‟s thesis,
EECS Department, University of California, Berkeley,
Dec 2005

[35] E. Wu, Y. Diao, and S. Rizvi. High-performance
complex event processing over streams. In SIGMOD
‟06: Proceedings of the 2006 ACM SIGMOD
international conference on Management of data, pages
407–418, New York, NY, USA, 2006. ACM. URL:
http://doi.acm.org/10.1145/1142473.1142520.

[36] Martin Thompson, Dave Farley, Michael Barker,
Patricia Gee, Andrew Stewart. Disruptor High
performance alternative to bounded queues for
exchanging data between concurrent threads. May-2011

Author Profile

Vikas Kale received the B.E. degree in Electronics
Engineering from Pune University in 2005. He now studies
M.E. computes in Pune University.

Paper ID: NOV152422 1887

