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Abstract: The model is developed to apply malaria data for both human population (hosts) and vector (mosquito) population. The hosts 

are divided into four compartments, susceptible  , infected infectious  and removed  at time  and vectors are 

divided into three compartments susceptible mosquitoes , infected mosquitoes  and infectious mosquitoes at time . 

Recovered group for mosquitoes is not considered, because mosquitoes are assumed to remain infectious until death. As the model has 

two different populations (hosts and vectors), the expected basic reproduction number reflects the infection transmitted from human to 

vector and vice-versa. In the present study, we have considered the effect of lost immunity and the partially recovered rate as a function 

of infection dependent. We have studied the application of optimal control theory to the model. Numerical illustration of the model is 

also given.  
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1. Introduction 
 
According to the latest WHO estimates, released in 
September 2015, there were 214 million cases of malaria in 
2015 and 438 000 deaths. Between 2000 and 2015, malaria 
incidence fell by 37% globally; during the same period, 
malaria mortality rates decreased by 60%. An estimated 6.2 
million malaria deaths have been averted globally since 
2000. Sub-Saharan Africa continues to carry a 
disproportionately high share of the global malaria burden. 
In 2015, the region was home to 89% of malaria cases and 
91% of malaria deaths. In 2013, an estimated 437 000 
African children died before their fifth birthday due to 
malaria. Globally, the disease caused an estimated 453 000 
under-five deaths in 2013. 
 
Malaria is caused by four members of the genus 
Plasmodium; Plasmodium vivax (P. vivax), Plasmodium 
falciparum (P. falciparum), Plasmodium malariae (P. 
malariae) and Plasmodium ovale (P. ovale). Plasmodium 
falciparum (malignant tertian malaria) and P. malariae 
(quartan malaria) are the most common species of malarial 
parasite in Asia and Africa. Plasmodium vivax (benign 
tertian malaria) predominates in Latin America, India and 
Pakistan. Plasmodium ovale (ovale tertian malaria) is almost 
exclusively found in Africa.  
 
In most cases, malaria is transmitted through the bites of 
female Anopheles mosquitoes. The intensity of transmission 
depends on factors related to the parasite, the vector, the 
human host, and the environment. Transmission is more 
intense in places where the mosquito lifespan is longer (so 
that the parasite has time to complete its development inside 
the mosquito) and where it prefers to bite humans rather 
than other animals. Transmission also depends on climatic 
conditions that may affect the number and survival of 
mosquitoes, such as rainfall patterns, temperature and 
humidity (Talawar and Pujar, 2011). In many places, 
transmission is seasonal, with the peak during and just after 
the rainy season. Malaria epidemics can occur when climate 
and other conditions suddenly favour transmission in areas 
where people have little or no immunity to malaria. They 

can also occur when people with low immunity move into 
areas with intense malaria transmission, for instance to find 
work, or as refugees. Human immunity is another important 
factor, especially among adults in areas of moderate or 
intense transmission conditions. Partial immunity is 
developed over years of exposure, and while it never 
provides complete protection, it does reduce the risk that 
malaria infection will cause severe disease. For this reason, 
in areas with less transmission and low immunity, all age 
groups are at risk. 
 
The first deterministic compartmental model was developed 
by Ross (1915), where host and vector populations are 
modeled as susceptible-infected-susceptible (SIS) and 
susceptible-infected (SI) respectively. Macdonald (1957) 
developed the malaria model by modifying the Ross model 
adding an exposed class. Smith et al.,(2012), based on a 
model of Ross and Macdonald , concluded that there is a 
relationship between the ratio of mosquitoes to humans and 
the number of infected humans, hence it is not necessary to 
kill every mosquito to end disease transmission. Mwanga et 
al (2014a) developed SIR malaria model for human 
population and SI model for mosquito population and used 
different parameter values estimated by Agusto et al (2012), 
Chitnis et al (2006) and Mukandavire et al (2010) for 
malaria transmission model. They studied the effect of 
infective immigrants in the presence drug resistance strains. 
Mwanga et al (2014b) also studied the malaria model in the 
presence parameter uncertainty using MCMC method. A 
person infected with malaria may be reinfected before 
recovering completely if bitten again by an infectious 
mosquito (Nedelman, 1985). Therefore, in the present paper 
we consider partially recovered humans (removals) with 
temporary immunity and lost immunity. We develop SEIR 
for human (hosts) population and SEI for mosquito (vector) 
population. We study the effect of lost immunity on state 
variables. 
 

2. Formulation of the Model 
 
The model divides the human population into four groups or 
compartments; those who are susceptible to the disease, 
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those who are infected but not infectious, those who are 
infectious and those who are in some form of recovery. 

Following is the transfer diagram of the malaria disease  

 

 
 

The system of differential equations is  

 

 
 

 
 Where ,  is the recruitment of 
susceptible,  is the contact rate between bacterial and 
susceptible hosts,  is the proportion of infected individuals 
who are infectious,  is the proportion of infected 
mosquitoes who are also infectious,  is immigration of 
infectious individuals,  rate at which susceptible remain 
uninfected even after contract,  rate at which individuals 
acquired immunity and  rate at which removed individuals 
lose their immunity.  
 
Due to biological reasons, only non-negative solutions of the 
system (1) are acceptable. It is necessary to study the 
solution properties of the system (1) in the closed set, 

Г =   
 
A vector (four tuple),  is said to be an 
equilibrium point for the system (1) if it satisfies the 
following conditions, 

S’=0, I’=0, Z’=0 and R’=0 (3) 
 
An equilibrium point  is meaningful iff E  Г. The 
equilibrium points are said to be disease free or endemic 
depending on  and . If there is no disease (  and 

), then the equilibrium point is said to be a disease-
free equilibrium (DFE) point, otherwise if  or  ( 
in other words  or ), then the equilibrium point is 
called endemic.  
 
Theorem: The system (1) admits at most two equilibrium 
points; one disease free equilibrium point  and one 
endemic equilibrium point , where  and 

. The state variables at endemic 
equilibrium point  are  

 

 

 

 
Threshold values: There are three commonly used threshold 
values in epidemiology the basic reproduction number , 
the contact number (σ) and the replacement number (R). The 
basic reproduction number is defined as the average number 
of secondary infections that occurs when one infective is 
introduced into a completely susceptible population. These 
are all at the beginning of the spreading of an infection 
disease; the entire population (except the infective invader) 
is susceptible. The  is defined at the time of invasion, 
where as σ and R are defined at all times. 
 
Due to differences in demographic rates, rural-urban 
gradients and contact structure, different human populations 
may be associated with different values of  for the same 
disease ( Hethcote, 2000 ; Anderson and May, 2005). 
 

Proposition: The Г is positively invariant under the flow 
reduced by the system of differential equations (1). 
 

Proof : The system of differential equations (1) can be 
written in the following way; 

 
Where E=(S, I, Z, R), F= ’ and  
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As M(X) has all off-diagonal entries non-negative, M(X) is 
Metzler matrix. Using the fact that F , the system (1) is 
positively invariant in Which means that any trajectory 
of the system of differential equations starting from an initial 
state in the positive orthant  remains forever in . 
 
3. Time dependent immunity (TDI) 
 
We consider time dependent immunity acquisition rate, 

. Assume that immunity is initially nil and that 
immunity tends asymptotically to a limiting value, say Λ. 

The rate of immunity ( ) is replaced by Λ(1-  . Then 
the last two equations of the system (1) of differential 
equations can be written as, 

 
 

The modification has no effect on stationary values, since 
 as t . So the stationary point remains the same 

only with  replacing  in system (1). 
 

 

 
Figure 1: Effect of vaccination on time dependent immunity v/s Age 

 
Note that this time-dependent model preserves the crossover 
phenomenon and the urban versus rural phenomenon. 
 
4. Application of the Model 
 
The model (1) is reformulated to apply to malaria data for 
both human population (hosts) as well as to vector 
population. The hosts are divided into four compartments as 
before, susceptible,  , infected,  , infectious ,  
and removed,  at time t and vectors are divided into 
three compartments susceptible mosquitoes,  , infected 
mosquitoes,  and infectious mosquitoes, at time 
t. Recovered group for mosquitoes is not considered, 
because mosquitoes are assumed to remain infectious until 
death. The system differential equations for human 
population is 

 
 

 
 

The system differential equations for mosquito population is  

 
 

 
The model has two different populations (hosts and vectors) 
and therefore the expected basic reproduction number 

reflects the infection transmitted from human population to 
vector and vice-versa. Thus the basic reproduction number, 

 can be taken as . Where  basic 
reproduction number for the infection from hosts to vectors, 

 and basic reproduction number for the 

infection from vectors to hosts, = .  

Thus, =                                     (9) 

 
4 (a). Effect of lost immunity 

 
The quantity in system (1) allows for a return path from 
the partially recovered or losing immunity, back to the 
susceptible compartment. Furthermore,  is taken as a 
function of  (that is infection dependent recovery rate) 
in difference to the observation by many that the greater the 
endemicity of the disease, the greater the immunity among 
population. Thus  should decrease with increasing . 
The exact relationship is in terms of a parameter  and takes 

the form  (Aron and May,1982) 
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Figure 2: Effect of lost immunity as a function of infection rate for various τ 

( , ) 

 
5. Application of Optimal Control Theory 
 
For analysis of the optimal level of effort required to control 
the spread of malaria, two control measures are taken into 
consideration. Screening and treatment of asymptomatic 
infective individuals ( ) and treatment of symptomatic 
individuals with antimalarial drugs ( ). The optimal control 
problem is stated as follows; 
 
Minimize the number of infected (both asymptomatic,  and 
symptomatic, ) within the time horizon , that is  
given by the function 

                   (10) 

Subject to the state system of equations (7-8), 

 
 

 
 

 
 

 
and the control constraint 

 
 (12) 

 
Where  

  (13) 
=  (14) 

and q is the solution of the state system (7).  and  are the 
individual costs for screening and treatment of 
asymptomatic individuals and for the treatment of 
symptomatic individuals respectively, , ,  and  are 

the relative weights.  defines actual costs while 
 defines the background costs (such as ordering, 

shipment and distribution, and storage). 
 
Therefore the optimal control problem (10) is to minimize 
the cost function 

 (15) 
 
This performance specification involves the number of 
asymptomatic and symptomatic individuals as well as effect 
of implementing the asymptomatic control ( ) and 
symptomatic control ( ). 
 
We find optimal control pair  such that 

          (16) 
 
Now applying the necessary condition from Pontryagin’s 
Maximum Principle (PMP), we have the problem 

minimizing a Hamiltonian, H pointwisely with respect to 
 

 
Theorem: Given an optimal control 
pair  and a solution of the system 
(11) there exists adjoint variables 

and  
such that, the Hamiltonian is given by  
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 (17) 
 
And ] 

-
[ +

 

 + + ] 
=-[ ( ] 
 

=-[  +  (- )]  
 ]  

 -[ +  
+ ] 

=-[  ] (18) 
 
With transversality conditions  

 (19)  
 
The optimal control  is given by  

=min  

= min           (20) 

 
6. Numerical Illustration 
 
In the simulation we consider various parameter values and 
some hypothetical values for state variables. First, we 
considered the model without any control measures and 
compared the state variables. Fig. 3 (a-d) gives a comparison 
of state variables when the loss of immunity is considered 
and the optimal controls are not in operation. Fig.3 (c-d) 
gives the effect of lost immunity on the state variables. The 
number of infectives (symptomatic) is more when lost 
immunity is considered as compared to that when 
lost immunity is not considered in the model Fig. 
4 illustrates the comparison of the effect of lost immunity on 
removals (immunized or recovery ).  
 
We study the effect of controls on the number of individuals 
of asymptomatic and symptomatic considering effect of 
control on asymptomatic alone, symptomatic alone and both 
(Fig. 5 (a-c)). Fig.5(c) illustrates that treating asymptomatic 
individuals alone will be more than treating the symptomatic 
individuals.  
 

 

Table: Model parameter values. Figures in parenthesis are the values used for estimating state variables. 
Parameter Description Value Reference 

 

Recruitment of susceptible (1/60)X365 (10) 

 

Contact rate between bacterial and susceptible hosts 0.03-0.5 (0.4) (1,7,13) 

 

Proportion of infected individuals who are infectious 0.15-0.6 (0.6) (11) 

 

Proportion of infected mosquitoes who are also infectious 0.02-0.5 (0.028) (11) 

 

Immigration of infectious individuals 0.00004 (4) 

 

Rate at which susceptible remain uninfected even after contract 0.001-0.03(0.028) Assumed 

 

Rate at which individuals acquired immunity 0.0146 (4) 

 

Rate at which removed individuals lose their immunity 0.001-0.01(0.01) Assumed 
 

 
  

(b)  
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(d)  

 
Figure 3: Effect of lost immunity on the state variables (a-d) 

 

 
Figure 4: Comparison of removals with and without lost immunity 

 

 
 

 
(c)  

Figure 5: Optimal controls (a-c) 
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