
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Optimization of FPGA Architecture for Uniform
Random Number Generator Using LUT-SR Family

Rita Rawate
1
, M. V. Vyawahare

2

1Nagpur University, Priyadarshini College of Engineering, Nagpur

2Professor, Priyadarshini College of Engineering, Nagpur

Abstract: Field-Programmable Gate Arrays (FPGAs) are widely used to implement logic without going through an expensive
fabrication process. Field-programmable gate array optimized random number generators (RNGs) are more resource-efficient than
software-optimized RNGs because they can take advantage of bitwise operations and FPGA-specific features. The software community
has developed a number of high-quality, long period Random Number Generators (RNGs), some of which have been adapted for use in
FPGAs. However, these generators were designed to meet the needs of word-level instruction processors, and so are less efficient when
mapped to the bit-level operations available in FPGAs. This paper describes a type of FPGA RNG called a LUT-SR RNG, which takes
advantage of bitwise XOR operations and the ability to turn lookup tables (LUTs) into shift registers of varying lengths. This provides a
good resource–quality balance compared to previous FPGA-optimized generators. This paper deals with optimization of FPGA and
simulations is done in VHDL.

Keywords: FPGA (Field Programming Gate Array) , LUT(Look up table), LUT-SR(Look up table shift register),Uniform Random
Number Generator (RNG).

1. Introduction

MONTE CARLO applications are ideally suited to field-
programmable gate arrays (FPGAs) because of the highly
parallel nature of the applications, and because it is possible
to take advantage of hardware features to create very
efficient random number generators (RNGs). Uniform
random bits are extremely cheap to generate in an FPGA, as
large numbers of bits can be generated per cycle at high
clock rates using lookup tables [1], or first-in-first- out
(FIFO) queues [2]. In addition, these generators can be
customized to meet the exact requirements of the application,
both in terms of the number of bits required per cycle, and
for the FPGA architecture of the target platform.

Despite these advantages, FPGA-optimized generators are
not widely used in practice, as the process of constructing a
generator for a given parameterization is time consuming in
terms of both developer man hours and CPU time.

Random numbers have applications in many areas:
simulation, game-playing, cryptography, statistical sampling,
and evaluation of multiple integrals, particle transport
calculations, and computations in statistical physics, to name
a few [1,6]. Since each application involves slightly different
criteria for judging the ―worthiness‖ of the random numbers
generated, a variety of generators have been developed, each
with its own set of advantages and disadvantages. Many
applications are reliant on random numbers, such as financial
calculations, simulated equipment test beds, and simulation
of communications channels. Such applications require large
amounts of processing power, while providing many
opportunities to exploit fine-grain and coarse-grain
parallelism, and so are often ideally suited to implementation
in FPGAs [5, 7]. In order to function correctly, these
applications require many parallel streams of high quality,
large period, uncorrelated uniform random number
generators. These are most commonly used as input to

transformation functions which will provide the non-uniform
distributions, and typically require many uniform input bits
for each nonuniform output sample [1,2]. This paper explains
a family of generators which makes it easier to use FPGA-
optimized generators by given a simple method instantiate an
RNG. This helps to achieve the specific needs of their
application. Specifically, it shows how to create a family of
generators called LUT-SR RNGs, which use LUTs as shift
registers to achieve high quality and long periods, while
requiring very few resources.

This paper is structured as follows. Section II presents
general idea of field-programmable gate array. Section III
introduces uniform random number generator. Section IV
explains lut-opt RNGs .Section V gives idea about lut-FIFO
RNGs. Section VI introduces LUT-SR RNGs. Finally
Section VII deal with device utilization summery. Section
VIII gives idea about comparison of generators by recourse
usage and simulation results and synthesis report are given in
section IX and X. Section XI concludes the paper.

2. Field Programming Gate Array (FPGA)

A field-programmable gate array (FPGA) is an integrated
circuit designed to be configured by a customer or a designer
after manufacturing—hence "field-programmable". The
FPGA configuration is generally specified using a hardware
description language (HDL), similar to that used for an
application-specific integrated circuit (ASIC).

 FPGAs can be used to implement any logical function that
an ASIC can perform. The ability to update the functionality
after shipping, partial re-configuration of the portion of the
design and the low non-recurring engineering costs relative
to an ASIC design, offer advantages for many
applications[1,6]. FPGAs contain programmable logic
components called "logic blocks", and a hierarchy of
reconfigurable interconnects that allow the blocks to be

Paper ID: NOV152360 1804

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

"connected together"—somewhat like a one-chip
programmable breadboard. Logic blocks can be configured
to perform complex combinational functions, or merely
simple logic like AND and NAND[8]. Figure 1 show The
most common FPGA architecture which consists of an array
of logic blocks (called Configurable Logic Block, CLB, or
Logic Array Block, LAB, depending on vendor), I/O pads,
and routing channels. Generally, all the routing channels
have the same width (number of wires). Multiple I/O pads
may fit into the height of one row or the width of one column
in the array.

Figure 1: FPGA Architecture

In general, a logic block (CLB or LAB) consists of a few
logical cells. A typical cell consists of a 4-input Lookup table
(LUT), a Full adder (FA) and a D-type flip-flop, as shown.
The LUT are in this figure split into two 3-input LUTs. In
normal mode those are combined into a 4-input LUT through
the left mux. In arithmetic mode, their outputs are fed to the
FA. The selection of mode is programmed into the middle
mux. The output can be either synchronous or asynchronous,
depending on the programming of the mux to the right.

3. Uniform Random Number Geneartor (Rng)

Random values play a crucial role in several areas of science.
In dependency on field of application the requirements for
parameters of random sequence and generator of sequence
itself may vary. Focusing on the sequence origin A random
number generator (RNG) is a device designed to generate a
sequence of numbers or symbols that don‗t have any pattern.
Hardware-based systems for random number generation are
widely used, but often fall short of this goal, albeit they may
meet some of the statistical tests for randomness for ensuring
that they do not have any ―de-codable‖ patterns. Methods
for generating random results have existed since ancient
times, including dice, coin flipping, the shuffling of playing
cards, the use of yarrow stalks and many other techniques.
[1], [2].

The many applications of randomness have led to many
different methods for generating random data. These
methods may vary as to how unpredictable or random they
are, and how quickly they can generate random numbers.
[3,6].

A. Binary Linear RNGs

Binary linear recurrences operate on bits (binary digits),
where addition and multiplication of bits is implemented
using exclusive-or (⊕) and bitwise-and (⊗). The
recurrence of an RNG with n-bit state and r -bit outputs is
defined as:

xi +1 = Axi
yi +1 = Bxi +1
where xi = (xi,1 , xi,2 , . . . , xi,n)T is the n-bit state of the
generator, yi = (yi,1 , yi,2 , . . . , yi,r)T is the r -bit output of
the generator, A is an n × n binary transition matrix, and
B is an r × n binary output matrix. Because the state is
finite, and the recurrence is deterministic, eventually the
state sequence x0 , x1, x2 , . . . must start to repeat. The
minimum value p such that xi + p = xi is called the period
of the generator, and one goal in designing RNGs is to
achieve the maximum period of p = 2n − 1. A period of
2n cannot be achieved because it is impossible to choose A

such that x0 = 0 maps to anything other than x1 = 0. This
leads to two sequences in a maximum period generator: a
degenerate sequence of length 1 which contains only zero,
and the main sequence which iterates through every possible
nonzero n-bit pattern before repeating. A necessary and
sufficient condition for a generator is to have maximum
period.

B. Linear feedback shift register

The LFSR (Linear Feedback Shift Register) is the most
direct form of binary linear recurrence, as it simply
implements the characteristic polynomial. For example, the
polynomial x6 + x5 + x0 translates to the state transition
function:

Note that only one bit, s1,i+1, represents a ―new‖ value. All
the other state bits are simply shifted copies of values from
the previous state. So although in principle the LFSR
generates n bits per step, only one of them is actually useful.
In the rest of this we will use the following terminology to
refer to the two kinds of bits: ―Active Bits‖ are bits formed
from a combination of two or more bits in the previous state,
while ―FIFO Bits‖ are a direct copy of just one bit from the
previous state. Only active bits can reasonably be considered
as independent random bits, so the maximum number of
random bits taken from an RNG per step is the number of
active bits. An LFSR only has one active bit, so to generate
w random bits per step it is necessary to use w separate
LFSRs, and combine one bit from each . Unfortunately this
means that wn bits of storage only produce a sequence of
length 2^n −1, which is much less than the maximum
possible period of 2^nw − 1.

LFSR has more active bits, they still have significant
correlations and are completely unsuitable for use as
independent random bits.

A linear feedback shift register (LFSR) is a shift register
whose input bit is a linear function of its previous state. the
only linear function of single bits is XOR thus it is a whose
input bit is driven by the exclusive or (xor) of some bits of
the overall shift register value. The initial value of LFSR is
called the seed, and because the operation of register is
deterministic , the stream of values produced by the register
is completely determined by its current (or previous) state.
Likewise because the register has a finite number of possible
state, it must eventually enter a repeating cycle. However a

Paper ID: NOV152360 1805

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

LFSR with a well chosen feedback function can produce a
sequence.

C. Software RNGs

In addition to the hardware-optimized LUT-OPT and LUT-
FIFO generators, a number of generators designed for
software architectures have been ported to FPGA
architectures.

Combined Tausworthe [3]—Software generators which use
word-level shift, XOR, and AND operations to construct
simple recurrences with distinct periods, which are then
combined using XOR to produce a much longer period
generator.

Mersenne Twister [5]—This uses the same word-level oper-
ators as the Combined Tausworthe, combined with a
large RAM-based queue, to create a software generator with
a fairly good equidistribution and the extremely long

period of 219937 − 1.

WELL [10]—This generator uses techniques similar to the
Mersenne Twister, but uses a more complex recurrence step
involving multiple memory accesses per sample, to
achieve the maximum possible equidistribution at the same
period as the Mersenne Twister.

All the software generators are designed with word-level
instructions in mind, and so tend to be inefficient in terms
of resources consumed per bit generated.

4. LUT-Optimized (LUT-OPT) RNGs

A simple example of a maximum period LUT-OPT
generator with r = 6 and t = 3 is given by

LUT-OPT generators have two key advantages.
1) Resource efficiency: Each additional bit requires one

additional LUT and FF, so resource usage scales linearly,
and generating r bits per cycle requires r LUT-FFs.

2) Performance: The critical path in terms of logic is a
single LUT delay, so the generators are extremely fast, so
usually the clock net is the limiting factor, with routing
delay and congestion only becoming a factor for large n.
Some disadvantages of LUT-OPT generators are
following:

1) Complexity: Each (r, t) combination requires a unique

matrix of connections, which must be found using
specialized software. If these matrices are randomly
constructed (as in previous work), then it is difficult to
compactly encode these matrices, so it is difficult for
FPGA engineers to make use of the RNGs.

2) Quality: The random bits are formed as a linear
combination of random bits produced in the previous
cycle— when t = 3, some of the new bits will be a

simple two-input XOR of bits from the previous cycle.
The input of this lag-1 linear dependence is minimal in
modern FPGAs where t ≥ 5, and also diminishes
quickly as r is increased, but remains a source of
concern.

3) Period: In order to achieve a period of 2n − 1, it is
necessary to choose r = n, even if far fewer than n bits
are needed per cycle. An absolute minimum safe period
for a hardware generator is 264 − 1, but it is preferable
to have much larger periods of 21000 − 1 or mor.

4) Seeding: It is necessary to initialize RNGs with a chosen
state at run time, so that different hardware instances of
the same RNG algorithm will generate different random
streams. In a LUT-optimized generator, it is possible to
implement serial loading of state using one LUT input
per RNG bit to select between RNG and load mode,
but in practice, for a randomly chosen matrix A, only
parallel loading is possible.

5. LUT-FIFO RNGs

One way of removing the quality and period problems is
provided by LUT-FIFO generators [2]. These augment the r
bits of state held in FFs with an additional depth-k width-w
first-in-first-out (FIFO), for a total period of 2n − 1,
where n = r + wk, shown in Fig. LUT-FIFO generators

can provide long periods such as 211213 − 1 and 219937.

Figure 3: LUT-FIFO RNG

Some disadvantages are following:

1) For reasonable efficiency, the FIFO needs to be

implemented using a block RAM, a relatively expensive
resource which one would usually prefer to use else-
where in a design.

2) The wordwise granularity of block-RAM-based FIFOs
reduces the flexibility in the choice of r , as it can only
be varied in multiples of k.

These are mild disadvantages when compared to the quality
and period problems of LUT-optimized generators that have
been eliminated, but LUT-FIFO generators also make the
problems of complexity and efficient initialization slightly
worse. If extremely high quality and period are needed, then
LUT-FIFO generators present the fastest and most efficient
solution, but few applications actually require such high
levels of quality, particularly given the need for expensive

Paper ID: NOV152360 1806

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

block- RAM resources.

6. LUT-SR

LUT-SR generator sits between the LUT-optimized and
LUT-FIFO generators. It fixes all problems related to
complexity and serial seeding found with both generators,
and provides much higher periods than LUT-OPT generators
for a cost of one extra LUT-FF per bit, while eliminating the
block- RAM resource needed for an LUT-FIFO RNG[7].
LUTs can be configured in a number of different ways, such
as basic ROMs, RAMs, and shift registers. Configuring
LUTs as shift registers provides an attractive means of
adding more storage bits to a binary linear generator.

Figure 4: LUT-SR RNG

There are four stages to develop uniform random numbers.

6.1 Create Initial Seed Cycle

A cycle of length r is created through the r XOR gates at the
output of the RNG. FPGA optimized uniform random
number generator with a large period and with the ability to
generate large quantities of uniform random numbers from a
single seed.At this stage there are no FIFO bits, or
equivalently there are r FIFOs of length is 0, is shown in
Figure 6.1

Figure 6.1: Create Seed Cycle

 6.2. FIFO Extension

The cycle is randomly extended until a total cycle length of n
is reached, by randomly selecting a FIFO and increasing its
length by 1, while maintaining the known cycle is shown in
Figure 6.2. A FIFO is a sequential data buffer that is very
easy to use.Very small FIFOs can be implemented with flip
flops or register arrays, sometimes even with shift registers.

Figure 6.2: ADD LOADING CONNECTIONS

 The known cycle is added to the ―taps,‖ which describes the
matrix. The cycle describes the FIFO connections
completely, and also describes the first input to each of the r
XOR gates

6.3. ADD XOR CONNECTIONS

The cycle provides one input for each of the XOR gates, so
now the additional t – 1 random inputs are added over t−1
rounds. Each round is constructed from a permutation of the
FIFO outputs, which ensures that at the end each FIFO
output is used at most t times is shown in Figure 6.3. Some
bits will be assigned the same FIFO bit in multiple rounds,
and so will have fewer than t inputs: to achieve a maximum
period generator, and also provides an entry point into the
cycle for seed loading.

Figure 6.3: Add XOR Connections

6.4 Output Permutations

The simple dependency between adjacent bits is masked
using a final output permutation is shown in Figure. Each
permuted output bit is used at most times. Some bits will be
assigned the same FIFO bit in multiple rounds. The XOR
outputs are given to the SR and fed back to the FIFO
extensions.

Figure 6.4: Random Permutation

Paper ID: NOV152360 1807

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 6.5: Output Permutation

The initial seed for an 8-bit RNG is given.

A shift register is an n-bit register that shifts its stored data
by one bit position for every clock tick.

The resulting sequence is fed back to the FIFO SR.

Permutation of the resulting outputs is given to the XOR
gates, where the XOR gate outputs are shifted and thus
random number generation takes place successfully.

The same scheme is carried out for N bit RNG.

The permuted bits output is given to the XOR gates. For 8-
bit RNG the number of XOR gates is 8(t=8).

The concept of permutation is used up for improving
randomness among bits and thus employing unpredictability.
The first and last bits are interchanged

The same concept of permutation is used for different bit
RNGs. The permuted outputs are fed into the XOR gates and
for remaining inputs to XOR gates round basis is used. The
resulting outputs generate the random number cycle. The
cycle is fed into the [FIFO] of varying lengths (length=k).
The length should not exceed r. As each bit crosses the flip-
flop, it will be set to zero.

Thus random number generation takes place.

The resulting random numbers are generated such that their
period is 2^n -1.

The count of all zero state is reduced since the all zero state
leads to idle condition.

The period is the duration after which the entire sequence
goes on repeating based on the initial seed and the
permutations.

Register-Transfer-Level abstraction is used in VHDL
languages for the formation of high level representation of
the circuit and it clearly depicts the amount of LUTs used.

7. Device Utilization Summery

The device utilization summary results for 8-bit, RNG shows
the number of (resources) flip-flops and LUTs utilized

Table 1: Comparison of Generators By Resource Usage

8. Comparison of Generators by Resource

Usage

The device utilization summary results for 8-bit, RNG shows
the number of (resources) flip-flops and LUTs utilized. The
device utilization summary table is displayed by Xilinx
Design Suite soon after the RTL implementation is
completed.

Table 2: Device utilization summary of LUT-OPT RNG

Table 3: Device utilization summary of LUT-FIFO RNG

Table 4: Device utilization summary of LUT-SR RNG

9. Simualtion Result

The proposed method is simulated in VHDL .Figure 1 shows
simulation result of LUT-OPT RNG. Figure 2 shows
simulation result of LUT-FIFO RNG. and Figure 3 shows the
simulation result of LUT-SR RNG respectively.

Paper ID: NOV152360 1808

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 1: Simulation result of 8 bit LUT-OPT RNG

Figure 2: simulation result of LUT-FIFO RNG

Figure 3: Simulation result of 8 bit LUT-SR RNG

10. Synthesis Results

A. LUT-OPT RNG

Figure 1: 8- Bit LUT-OPT RNG Block

Figure 2: RTL Schematic of 8- Bit LUT-OPT RNG

Figure 3: Technology Schematic of 8 Bit LUT-OPT RNG

Figure 4: Delay of 8 bit LUT-OPT RNG

B. LUT-FIFO RNG

Figure 5: Technology Schematic Of 8 Bit LUT-FIFO RNG

Figure 6: Delay of 8- bit LUT-FIFO RNG

C. LUT-SR RNG

Figure 7: Technology schematic of 8 bit LUT-SR RNG

Paper ID: NOV152360 1809

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 8: Delay of 8 bit LUT-SR RNG

11. Conclusion

A family of FPGA-optimized uniform random number
generator, called a LUT-SR RNG. LUT-SR RNGs takes
advantage of the ability to configure LUTs as independent
shift-registers, allowing high-quality long period generators
to be implemented using only a small amount of logic. In
addition the period and quality scale with the number of
output bits, unlike generators adapted from software.

A key advantage of the LUT-SR generators over previous
FPGA-optimized uniform random number generators is that
they can be reconstructed using a simple algorithm ,new
RNGs without needing to find generator instances
themselves.
This paper uses a hardware description language called
VHDL to design LUT-OPT RNG, LUT-FIFO RNG and
LUT –SR RNG. In this dissertation, strategies &
implementation of different RNGs is described. The LUT-
OPT RNG, LUT-FIFO RNG, LUT -SR RNGs coded in
VHDL and VHDL code executing on the Xilinx ISE 13.1i
VHDL tools.

References

[1] D.b. Thomas and w.luk ―FPGA optimized uniform

random number generators using lut and shift registers
"in proc.conf.feild program. logic appl.2010,pp 77-82.

[2] D. B. Thomas and W. Luk, ―High quality uniform
random number generation using LUT optimised state-
transition matrices,‖ J. VLSI Signal Process., vol. 47,
no. 1, pp. 77–92, 2007.

[3] D. B. Thomas and W. Luk, ―FPGA-optimised high-
quality uniform random number generators,‖ in Proc.
Field Program. Logic Appl. Int. Conf., 2008, pp. 235–
244.

[4] P. L‘Ecuyer, ―Tables of maximally equidistributed
combined LFSR generators,‖ Math. Comput., vol. 68,
no. 225, pp. 261–269, 1999.

[5] uniform random number generators using luts and shift
registers,‖ in Proc. Int. Conf. Field Program. Logic
Appl., 2010, pp. 77–82.

[6] M. Matsumoto and T. Nishimura, ―Mersenne twister: A
623- dimensionally equidistributed uniform pseudo-
random number generator,‖ ACM Trans. Modeling
Comput. Simulat., vol. 8, no. 1, pp. 3–30, Jan. 1998.

[7] M. Saito and M. Matsumoto, ―SIMD-oriented fast
mersenne twister: A 128-bit pseudorandom number
generator,‖ in Monte-Carlo and Quasi-Monte Carlo

Methods. New York: Springer-Verlag, 2006, pp. 607–
622.

[8] F. Panneton, P. L‘Ecuyer, and M. Matsumoto,
―Improved long-period generators based on linear
recurrences modulo 2,‖ ACM Trans. Math. Software,
vol. 32, no. 1, pp. 1–16, 2006.

[9] M. Matsumoto and Y. Kurita, ―Twisted GFSR
generators II,‖ ACM Trans. Modeling Comput. Simulat.,
vol. 4, no. 3, pp. 254–266, 1994.

[10] P. L‘Ecuyer and R. Simard. (2007). TestU01 Random
Number Test Suite [Online].
Available:http://www.iro.umontreal.ca/∼imardr/indexe.
html.

[11] F. Panneton, P. L‘Ecuyer, and M. Matsumoto,
―Improved long-period generators based on linear
recurrences modulo 2,‖ ACM Trans. Math. Software,
vol. 32, no. 1, pp. 1–16, 2006.

[12] V. Shoup. (1997, Jan. 15). NTL: A Library for Doing
Number Theory [Online]. Available:
http://www.shoup.net/ntl/

[13] M. Albrecht and G. Bard. (2010). The M4RI Library -
Version 20100817 [Online]. Available:
http://m4ri.sagemath.org

[14] S. Duplichan. (2003). PPSearch: A Primitive Polynomial
Search Program [Online]. Available:
http://users2.ev1.net/∼sduplichan/
primitivepolynomials/

[15] V. Sriram and D. Kearney, ―A high throughput area time
efficient pseudo uniform random number generator
based on the TT800 algorithm,‖ in Proc. Int. Conf. Field
Program. Logic Appl., 2007, pp. 529–532.

[16] S. Konuma and S. Ichikawa, ―Design and evaluation of
hardware pseudorandom number generator mt19937,‖
IEICE Trans. Inf. Syst., vol. 88, no. 12, pp. 2876–2879,
2005.

[17] Y. Li, P. C. J. Jiang, and M. Zhang, ―Software/hardware
framework for generating parallel long-period random
numbers using the well method,‖ in Proc. Int. Conf.
Field Program. Logic Appl., Sep. 2011, pp. 110–115.

 Author Profile

Rita S. Rawate She born in BHANDARA,(M.S) on
May 7th 1986. She completed her B.E (ECE). From
MIET, Gondiya (M.S). She is pursuing her M.TECH in
VLSI from Priyadarshini college of engineering and
technology, Nagpur, Maharashtra, India

Paper ID: NOV152360 1810

