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Abstract: Field-Programmable Gate Arrays (FPGAs) are widely used to implement logic without going through an expensive 
fabrication process. Field-programmable gate array optimized random number generators (RNGs) are more resource-efficient than 
software-optimized RNGs because they can take advantage of bitwise operations and FPGA-specific features. The software community 
has developed a number of high-quality, long period Random Number Generators (RNGs), some of which have been adapted for use in 
FPGAs. However, these generators were designed to meet the needs of word-level instruction processors, and so are less efficient when 
mapped to the bit-level operations available in FPGAs. This paper describes a type of FPGA RNG called a LUT-SR RNG, which takes 
advantage of bitwise XOR operations and the ability to turn lookup tables (LUTs) into shift registers of varying lengths. This provides a 
good resource–quality balance compared to previous FPGA-optimized generators. This paper deals with optimization of FPGA and 
simulations is done in VHDL.  
 

Keywords: FPGA (Field Programming Gate Array) , LUT(Look up table), LUT-SR(Look up table shift register),Uniform Random 
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1. Introduction 
 

MONTE CARLO applications are ideally suited to field- 
programmable gate arrays (FPGAs) because of the highly 
parallel nature of the applications, and because it is possible 
to take advantage of hardware features to create very 
efficient random number generators (RNGs). Uniform 
random bits are extremely cheap to generate in an FPGA, as 
large numbers of bits can be generated per cycle at high 
clock rates using lookup tables [1], or first-in-first- out 
(FIFO) queues [2]. In addition, these generators can be 
customized to meet the exact requirements of the application, 
both in terms of the number of bits required per cycle, and 
for the FPGA architecture of the target platform. 
 
Despite these advantages, FPGA-optimized generators are 
not widely used in practice, as the process of constructing a 
generator for a given parameterization is time consuming in 
terms of both developer man hours and CPU time. 
 
Random numbers have applications in many areas: 
simulation, game-playing, cryptography, statistical sampling, 
and evaluation of multiple integrals, particle transport 
calculations, and computations in statistical physics, to name 
a few [1,6]. Since each application involves slightly different 
criteria for judging the ―worthiness‖ of the random numbers 
generated, a variety of generators have been developed, each 
with its own set of advantages and disadvantages. Many 
applications are reliant on random numbers, such as financial 
calculations, simulated equipment test beds, and simulation 
of communications channels. Such applications require large 
amounts of processing power, while providing many 
opportunities to exploit fine-grain and coarse-grain 
parallelism, and so are often ideally suited to implementation 
in FPGAs [5, 7]. In order to function correctly, these 
applications require many parallel streams of high quality, 
large period, uncorrelated uniform random number 
generators. These are most commonly used as input to 

transformation functions which will provide the non-uniform 
distributions, and typically require many uniform input bits 
for each nonuniform output sample [1,2]. This paper explains 
a family of generators which makes it easier to use FPGA-
optimized generators by given a simple method instantiate an 
RNG. This helps to achieve the specific needs of their 
application. Specifically, it shows how to create a family of 
generators called LUT-SR RNGs, which use LUTs as shift 
registers to achieve high quality and long periods, while 
requiring very few resources. 
 
This paper is structured as follows. Section II presents 
general idea of field-programmable gate array. Section III 
introduces uniform random number generator. Section IV 
explains lut-opt RNGs .Section V gives idea about lut-FIFO 
RNGs. Section VI introduces LUT-SR RNGs. Finally 
Section VII deal with device utilization summery. Section 
VIII gives idea about comparison of generators by recourse 
usage and simulation results and synthesis report are given in 
section IX and X. Section XI concludes the paper. 
 
2. Field Programming Gate Array (FPGA)  
  

A field-programmable gate array (FPGA) is an integrated 
circuit designed to be configured by a customer or a designer 
after manufacturing—hence "field-programmable". The 
FPGA configuration is generally specified using a hardware 
description language (HDL), similar to that used for an 
application-specific integrated circuit (ASIC). 
 

 FPGAs can be used to implement any logical function that 
an ASIC can perform. The ability to update the functionality 
after shipping, partial re-configuration of the portion of the 
design and the low non-recurring engineering costs relative 
to an ASIC design, offer advantages for many 
applications[1,6]. FPGAs contain programmable logic 
components called "logic blocks", and a hierarchy of 
reconfigurable interconnects that allow the blocks to be 
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"connected together"—somewhat like a one-chip 
programmable breadboard. Logic blocks can be configured 
to perform complex combinational functions, or merely 
simple logic like AND and NAND[8]. Figure 1 show The 
most common FPGA architecture which consists of an array 
of logic blocks (called Configurable Logic Block, CLB, or 
Logic Array Block, LAB, depending on vendor), I/O pads, 
and routing channels. Generally, all the routing channels 
have the same width (number of wires). Multiple I/O pads 
may fit into the height of one row or the width of one column 
in the array. 
 

 
Figure 1: FPGA Architecture 

 
In general, a logic block (CLB or LAB) consists of a few 
logical cells. A typical cell consists of a 4-input Lookup table 
(LUT), a Full adder (FA) and a D-type flip-flop, as shown. 
The LUT are in this figure split into two 3-input LUTs. In 
normal mode those are combined into a 4-input LUT through 
the left mux. In arithmetic mode, their outputs are fed to the 
FA. The selection of mode is programmed into the middle 
mux. The output can be either synchronous or asynchronous, 
depending on the programming of the mux to the right. 
 
3. Uniform Random Number Geneartor (Rng) 
 

Random values play a crucial role in several areas of science. 
In dependency on field of application the requirements for 
parameters of random sequence and generator of sequence 
itself may vary. Focusing on the sequence origin A random 
number generator (RNG) is a device designed to generate a 
sequence of numbers or symbols that don‗t have any pattern. 
Hardware-based systems for random number generation are 
widely used, but often fall short of this goal, albeit they may 
meet some of the statistical tests for randomness for ensuring 
that they do not have any ―de-codable‖ patterns. Methods 
for generating random results have existed since ancient 
times, including dice, coin flipping, the shuffling of playing 
cards, the use of yarrow stalks and many other techniques. 
[1], [2]. 
 
The many applications of randomness have led to many 
different methods for generating random data. These 
methods may vary as to how unpredictable or random they 
are, and how quickly they can generate random numbers. 
[3,6].  
 
A. Binary Linear RNGs 

Binary linear recurrences operate on bits (binary digits), 
where addition and multiplication of bits is implemented 
using exclusive-or (⊕) and bitwise-and (⊗). The 
recurrence of an RNG with n-bit state and r -bit outputs is 
defined as: 

xi +1 = Axi 
yi +1 = Bxi +1  
where xi = (xi,1 , xi,2 , . . . , xi,n )T is the n-bit state of the 
generator, yi = (yi,1 , yi,2 , . . . , yi,r )T is the r -bit output of 
the generator, A is an n × n binary transition matrix, and 
B is an r × n binary output matrix. Because the state is 
finite, and the recurrence is deterministic, eventually the 
state sequence x0 , x1, x2 , . . . must start to repeat. The 
minimum value p such that xi + p =  xi is called the period 
of the generator, and one goal in designing RNGs is to 
achieve the maximum period of p = 2n − 1. A period of 
2n cannot be achieved because it is impossible to choose A 

such that x0 = 0 maps to anything other than x1 = 0. This 
leads to two sequences in a maximum period generator: a 
degenerate sequence of length 1 which contains only zero, 
and the main sequence which iterates through every possible 
nonzero n-bit pattern before repeating. A necessary and 
sufficient condition for a generator is to have maximum 
period. 
 
B. Linear feedback shift register 

The LFSR (Linear Feedback Shift Register) is the most 
direct form of binary linear recurrence, as it simply 
implements the characteristic polynomial. For example, the 
polynomial x6 + x5 + x0 translates to the state transition 
function: 

 
Note that only one bit, s1,i+1, represents a ―new‖ value. All 
the other state bits are simply shifted copies of values from 
the previous state. So although in principle the LFSR 
generates n bits per step, only one of them is actually useful. 
In the rest of this we will use the following terminology to 
refer to the two kinds of bits: ―Active Bits‖ are bits formed 
from a combination of two or more bits in the previous state, 
while ―FIFO Bits‖ are a direct copy of just one bit from the 
previous state. Only active bits can reasonably be considered 
as independent random bits, so the maximum number of 
random bits taken from an RNG per step is the number of 
active bits. An LFSR only has one active bit, so to generate 
w random bits per step it is necessary to use w separate 
LFSRs, and combine one bit from each . Unfortunately this 
means that wn bits of storage only produce a sequence of 
length 2^n −1, which is much less than the maximum 
possible period of 2^nw − 1.  
 
LFSR has more active bits, they still have significant 
correlations and are completely unsuitable for use as 
independent random bits. 
 
A linear feedback shift register (LFSR) is a shift register 
whose input bit is a linear function of its previous state. the 
only linear function of single bits is XOR thus it is a whose 
input bit is driven by the exclusive or (xor) of some bits of 
the overall shift register value. The initial value of LFSR is 
called the seed, and because the operation of register is 
deterministic , the stream of values produced by the register 
is completely determined by its current (or previous) state. 
Likewise because the register has a finite number of possible 
state, it must eventually enter a repeating cycle. However a 
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LFSR with a well chosen feedback function can produce a 
sequence. 
 
C. Software RNGs 

In addition to the hardware-optimized LUT-OPT and LUT- 
FIFO generators, a number of generators designed for 
software architectures have been ported to FPGA 
architectures. 
 
Combined Tausworthe [3]—Software generators which use 
word-level shift, XOR, and AND operations to construct 
simple recurrences with distinct periods, which are then 
combined using XOR to produce a much longer period 
generator. 
 
Mersenne Twister [5]—This uses the same word-level oper- 
ators as the Combined Tausworthe, combined with a 
large RAM-based queue, to create a software generator with 
a fairly good equidistribution and the extremely long 

period of 219937 − 1. 
 
WELL [10]—This generator uses techniques similar to the 
Mersenne Twister, but uses a more complex recurrence step 
involving multiple memory accesses per sample, to 
achieve the maximum possible equidistribution at the same 
period as the Mersenne Twister. 
 
All the software generators are designed with word-level 
instructions in mind, and so tend to be inefficient in terms 
of resources consumed per bit generated. 
 
4. LUT-Optimized (LUT-OPT) RNGs 
 

A simple example of a maximum period LUT-OPT 
generator with r = 6 and t = 3 is given by 
 

 
 
LUT-OPT generators have two key advantages. 
1) Resource efficiency: Each additional bit requires one 

additional LUT and FF, so resource usage scales linearly, 
and generating r bits per cycle requires r LUT-FFs. 

2) Performance: The critical path in terms of logic is a 
single LUT delay, so the generators are extremely fast, so 
usually the clock net is the limiting factor, with routing 
delay and congestion only becoming a factor for large n. 
Some disadvantages of LUT-OPT generators are 
following: 

 
1) Complexity: Each (r, t ) combination requires a unique 

matrix of connections, which must be found using 
specialized software. If these matrices are randomly 
constructed (as in previous work), then it is difficult to 
compactly encode these matrices, so it is difficult for 
FPGA engineers to make use of the RNGs. 

2) Quality: The random bits are formed as a linear 
combination of random bits produced in the previous 
cycle— when t = 3, some of the new bits will be a 

simple two-input XOR of bits from the previous cycle. 
The input of this lag-1 linear dependence is minimal in 
modern FPGAs where t ≥ 5, and also diminishes 
quickly as r is increased, but remains a source of 
concern. 

3) Period: In order to achieve a period of 2n −  1, it is 
necessary to choose r = n, even if far fewer than n bits 
are needed per cycle. An absolute minimum safe period 
for a hardware generator is 264 − 1, but it is preferable 
to have much larger periods of 21000 − 1 or mor. 

4) Seeding: It is necessary to initialize RNGs with a chosen 
state at run time, so that different hardware instances of 
the same RNG algorithm will generate different random 
streams. In a LUT-optimized generator, it is possible to 
implement serial loading of state using one LUT input 
per RNG bit to select between RNG and load mode, 
but in practice, for a randomly chosen matrix A, only 
parallel loading is possible.  

 
5. LUT-FIFO RNGs 
 

One way of removing the quality and period problems is 
provided by LUT-FIFO generators [2]. These augment the r 
bits of state held in FFs with an additional depth-k width-w 
first-in-first-out (FIFO), for a total period of 2n −  1, 
where n = r + wk, shown in Fig. LUT-FIFO generators 

can provide long periods such as 211213 − 1 and 219937. 
 

 
Figure 3: LUT-FIFO RNG 

 
Some disadvantages are following: 
 
1) For reasonable efficiency, the FIFO needs to be 

implemented using a block RAM, a relatively expensive 
resource which one would usually prefer to use else- 
where in a design. 

2) The wordwise granularity of block-RAM-based FIFOs 
reduces the flexibility in the choice of r , as it can only 
be varied in multiples of k. 

These are mild disadvantages when compared to the quality 
and period problems of LUT-optimized generators that have 
been eliminated, but LUT-FIFO generators also make the 
problems of complexity and efficient initialization slightly 
worse. If extremely high quality and period are needed, then 
LUT-FIFO generators present the fastest and most efficient 
solution, but few applications actually require such high 
levels of quality, particularly given the need for expensive 
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block- RAM resources. 
 
6. LUT-SR 
 

LUT-SR generator sits between the LUT-optimized and 
LUT-FIFO generators. It fixes all problems related to 
complexity and serial seeding found with both generators, 
and provides much higher periods than LUT-OPT generators 
for a cost of one extra LUT-FF per bit, while eliminating the 
block- RAM resource needed for an LUT-FIFO RNG[7]. 
LUTs can be configured in a number of different ways, such 
as basic ROMs, RAMs, and shift registers. Configuring 
LUTs as shift registers provides an attractive means of 
adding more storage bits to a binary linear generator. 

 
Figure 4: LUT-SR RNG 

 
There are four stages to develop uniform random numbers. 
 
6.1 Create Initial Seed Cycle 

 
A cycle of length r is created through the r XOR gates at the 
output of the RNG. FPGA optimized uniform random 
number generator with a large period and with the ability to 
generate large quantities of uniform random numbers from a 
single seed.At this stage there are no FIFO bits, or 
equivalently there are r FIFOs of length is 0, is shown in 
Figure 6.1 
 

 
Figure 6.1: Create Seed Cycle 

 
 6.2. FIFO Extension 

 
The cycle is randomly extended until a total cycle length of n 
is reached, by randomly selecting a FIFO and increasing its 
length by 1, while maintaining the known cycle is shown in 
Figure 6.2. A FIFO is a sequential data buffer that is very 
easy to use.Very small FIFOs can be implemented with flip 
flops or register arrays, sometimes even with shift registers. 
 

 
Figure 6.2: ADD LOADING CONNECTIONS 

 

 The known cycle is added to the ―taps,‖ which describes the 
matrix. The cycle describes the FIFO connections 
completely, and also describes the first input to each of the r 
XOR gates 
 
6.3. ADD XOR CONNECTIONS 

The cycle provides one input for each of the XOR gates, so 
now the additional t – 1 random inputs are added over t−1 
rounds. Each round is constructed from a permutation of the 
FIFO outputs, which ensures that at the end each FIFO 
output is used at most t times is shown in Figure 6.3. Some 
bits will be assigned the same FIFO bit in multiple rounds, 
and so will have fewer than t inputs: to achieve a maximum 
period generator, and also provides an entry point into the 
cycle for seed loading. 

 
Figure 6.3: Add XOR Connections 

 

6.4 Output Permutations 

 

The simple dependency between adjacent bits is masked 
using a final output permutation is shown in Figure. Each 
permuted output bit is used at most times. Some bits will be 
assigned the same FIFO bit in multiple rounds. The XOR 
outputs are given to the SR and fed back to the FIFO 
extensions. 

 
Figure 6.4: Random Permutation 
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Figure 6.5: Output Permutation 

 

The initial seed for an 8-bit RNG is given. 
 
A shift register is an n-bit register that shifts its stored data 
by one bit position for every clock tick. 
 
The resulting sequence is fed back to the FIFO SR. 
 
Permutation of the resulting outputs is given to the XOR 
gates, where the XOR gate outputs are shifted and thus 
random number generation takes place successfully. 
 
The same scheme is carried out for N bit RNG. 
 
The permuted bits output is given to the XOR gates. For 8-
bit RNG the number of XOR gates is 8(t=8).  
 
The concept of permutation is used up for improving 
randomness among bits and thus employing unpredictability.  
The first and last bits are interchanged 
 
The same concept of permutation is used for different bit 
RNGs. The permuted outputs are fed into the XOR gates and 
for remaining inputs to XOR gates round basis is used.  The 
resulting outputs generate the random number cycle. The 
cycle is fed into the [FIFO] of varying lengths (length=k). 
The length should not exceed r. As each bit crosses the flip-
flop, it will be set to zero. 
 
Thus random number generation takes place. 
 
The resulting random numbers are generated such that their 
period is 2^n -1. 
 
The count of all zero state is reduced since the all zero state 
leads to idle condition. 
 
The period is the duration after which the entire sequence 
goes on repeating based on the initial seed and the 
permutations. 
 
Register-Transfer-Level abstraction is used in VHDL 
languages for the formation of high level representation of 
the circuit and it clearly depicts the amount of LUTs used. 
 
7. Device Utilization Summery 
 

The device utilization summary results for 8-bit, RNG shows 
the number of (resources) flip-flops and LUTs utilized 
 

 

 

 

Table 1: Comparison of Generators By Resource Usage 

 
 

8. Comparison of Generators by Resource 

Usage 
 

The device utilization summary results for 8-bit, RNG shows 
the number of (resources) flip-flops and LUTs utilized. The 
device utilization summary table is displayed by Xilinx 
Design Suite soon after the RTL implementation is 
completed. 
  

Table 2: Device utilization summary of LUT-OPT RNG 

 
 

Table 3: Device utilization summary of LUT-FIFO RNG 

 
 

Table 4: Device utilization summary of LUT-SR RNG 

 
 

9. Simualtion Result 
 

The proposed method is simulated in VHDL .Figure 1 shows 
simulation result of LUT-OPT RNG. Figure 2 shows 
simulation result of LUT-FIFO RNG. and Figure 3 shows the 
simulation result of LUT-SR RNG respectively. 
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Figure 1: Simulation result of 8 bit LUT-OPT RNG 

 

 
Figure 2: simulation result of LUT-FIFO RNG 

 

  
Figure 3: Simulation result of 8 bit LUT-SR RNG 

 
10. Synthesis Results 
 

A. LUT-OPT RNG 

 

 
Figure 1: 8- Bit LUT-OPT RNG Block 

  

 
Figure 2: RTL Schematic of 8- Bit LUT-OPT RNG 

 

 
Figure 3: Technology Schematic of 8 Bit LUT-OPT RNG 

 

 
Figure 4: Delay of 8 bit LUT-OPT RNG 

 
B. LUT-FIFO RNG 

 
Figure 5: Technology Schematic Of 8 Bit LUT-FIFO RNG 

 

 
Figure 6: Delay of 8- bit LUT-FIFO RNG 

 
C. LUT-SR RNG 

 
Figure 7: Technology schematic of 8 bit LUT-SR RNG 
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Figure 8: Delay of 8 bit LUT-SR RNG 

 
11. Conclusion 
 

A family of FPGA-optimized uniform random number 
generator, called a LUT-SR RNG. LUT-SR RNGs takes 
advantage of the ability to configure LUTs as independent 
shift-registers, allowing high-quality long period generators 
to be implemented using only a small amount of logic. In 
addition the period and quality scale with the number of 
output bits, unlike generators adapted from software.  
 
A key advantage of the LUT-SR generators over previous 
FPGA-optimized uniform random number generators is that 
they can be reconstructed using a simple algorithm ,new 
RNGs without needing to find generator instances 
themselves.  
This paper uses a hardware description language called 
VHDL to design LUT-OPT RNG, LUT-FIFO RNG and 
LUT –SR RNG. In this dissertation, strategies & 
implementation of different RNGs is described. The LUT-
OPT RNG, LUT-FIFO RNG, LUT -SR RNGs coded in 
VHDL and VHDL code executing on the Xilinx ISE 13.1i 
VHDL tools. 
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