
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Performance Enhancement of MapReduce
Framework in Big Data Application Using Load

Balancing with Cache

Sushant Shirish Nagavkar
1
, Ashishkumar

2

1M.E. Computer Network Student from G.H. Raisoni Collage of Engineering and management, Ahemadnagar, India

2Assistant Professor of G.H. Raisoni Collage of Engineering and management, Ahemadnagar, India

Abstract: Hadoop is open source software that is used to store big data, it supports data demanding applications and performs

analysis, using a random placement method for parallel processing to give effortlessness and load balance. To achieve maximum

parallelism per group to load balance a new Data-gRouping-AWare (DRAW) data placement is used. Problem in big data is when any

query executes repeatedly it repeats whole process of execution to obtain result. In MapReduce framework and generates a large

amount of intermediate data. Such huge amount of information is thrown away after the tasks finish, because MapReduce is not able

to use this data. Dache, a data-aware cache framework for big-data applications gives the produced intermediate results to the cache

manager. Task inquiries the cache manager before performing the actual computing work.

Keywords: BEA, Big-data, caching, DACH, DRAW, Hadoop, HDFS, MapReduce

1. Introduction

Big data belongs to datasets whose size is outside the
capacity of usual database software tools to capture, store,
manage, and analyze [2]. “Big Data", described by the
unusual volume of data, data generation velocity, and
structural variety of data, support for extensive data
analytics form a mainly challenging task [5]. The main aim
of big data is to help companies make better business
decisions by facilitating data scientists and users to analyze
huge volumes of transaction data and other data sources [6].
With the help of predictive analytics and knowledge mining
big data can be easily processed but due to unstructured data
it may not fit in traditional data warehouse [6]. But
traditional data warehouses are unable to handle the
processing demands of big data. Apache is founded by
Hadoop and it is a software framework for processing large
datasets. It uses Hadoop Distributed File System (HDFS) for
storage purpose and MapReduce for processing components
of Hadoop [2].

Figure 1: General Architecture of big data analytics.

For the large-scale processing and analysis of vast data sets
MapReduce is the most popular framework. MapReduce
programming is useful for processing large datasets.
MapReduce uses 2 functions: Map and Reduce function.
User can write the Map function which takes input and
produces a set of key/value pairs. This all produced values

with the same intermediate key I is grouped by the
MapReduce library and then passes it to the Reduce
function. The Reduce function is also written by the user
which accepts and a set of intermediate key I and values for
that key. It merges these values to obtain probably smaller
set of values [2].

The main function of MapReduce framework executes on a
single master machine where input data is preprocessed
before map functions are called and/or post process the
output of reduce functions. As per need of applications, a
pair of map and reduce functions may be executed once or
more time. The research area has newly received a lot of
attentions for developing MapReduce algorithms for
examine big data [7].

1.1 Big Data

Big data refers to datasets whose size is away from the
capacity of typical database software tools to capture, store,
manage, and analyze. The possible sources of big data are:

Traditional project data contains customer information from
CRM systems, Transactional ERP data, Web store
transactions, and common ledger data. Data like Call Detail
Records (CDR), weblogs, smart meters, manufacturing
sensors, equipment logs, and trading systems data are
machine generated data. A customer feedback stream,
micro-blogging sites like Twitter and social media platforms
like facebook are comes under social data. There are some
other sources of data like Health care, Public sector, Retail
and Manufacturing [2].

1.1.1 Characteristics of Big data

Big data is a term used to describe the collection of large
and complex data sets that are difficult to process using on
hand database management tools or traditional data
processing applications. Big data spans across seven

Paper ID: NOV152318 1661

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

dimensions which include volume, variety, volume, value,
veracity, volatility and complexity [4].

Volume: The volume of data here is very huge and is
generated from a lot of different devices. The size of the
data is usually in terabytes and petabytes. All this data also
needs to be encrypted for privacy protection.

Velocity: This describes the real time attribute found in
some of the data sets for example streaming data. The result
that misses the appropriate time is usually of little value.

Variety: Big data consists of a variety of different types of
data i.e. structured, unstructured and semi-structured data.
The data maybe in the form of blogs, videos, pictures, audio
files, location information etc.

Value: This refers to the complex, advanced, predictive,
business analysis and insights associated with the large data
sets.

Veracity: This deals with uncertain or imprecise data. It
refers to the noise, biases and abnormality in data. This is
where we find out if the data that is being stored and mined
is meaningful to the problem being analyzed.

Volatility: Big Data volatility refers to how long the data is
going to be valid and how long it should be stored.

Complexity: A complex dynamic relationship often exists in
Big data. The change of one data might result in the change
of more than one set of data triggering a rippling effect.

1.2 Mapreduce

For processing and generating large dataset MapReduce
programming model is used. Users can write a map function
that processes a key/value pair to produce a set of
intermediate key/value pairs, and a reduce function is
capable of merging this all intermediate values associated
with the same intermediate key.

Figure 2: MapReduce programming model [1].

MapReduce is popular due to its simple programming
interface and excellent performance while applying a large
range of applications. Such applications receive a huge

amount of input data and also called as “Big-data
applications”. As shown in Fig. 2, input data is first divide
and then supply to workers in the map phase. Individual data
substances are called records. Each worker got this splinted
input from MapReduce system to produces records.
Intermediate results generated in the map phase are shuffled
and sorted by the MapReduce system and are then give to
the workers in the reduce phase. Final results are produced
by number of reducers and written to the disk.

Conceptually the map and reduce functions gave by the user
have connected Types:

Map (k1, v1) → list (K2, v2)
Reduce (K2, list (v2)) → list (v2)

I.e., the input keys and values are drawn from a different
domain than the output keys and values. Furthermore, the
intermediate keys and values are from the same domain as
the output keys and values [9].

This paper is organized as follows: Section II describes
literature survey, which explains the work done earlier by
different authors. Section III explains the existing system for
big data processing for parallel processing and load balance.
Section IV explains about proposed system, its architecture,
programming model and algorithm. Section V gives the idea
about expected results of proposed system and Section VI
briefs the conclusion.

2. Literature Survey

Several previous works exploited the grouping-like data
semantics and organized data layout in some specific ways
to support high-performance data accesses.

In [3] Qi Chen, Cheng Liu, and Zhen Xia, in MapReduce
system straggler machines impact seriously straggler
machines takes an unusually long time to finish tasks.
System performance affect by: data skew, asynchronous task
starts, improper configuration of phase pro-portion and
unexpected resource competitions. To overcome these issues
they develop a new strategy called maximum cost
performance (MCP). Aim’s is not only reducing the job
execution time but also throughput improving the cluster.

In [4] Shanjiang Tang, Bu-Sung Lee, Bingsheng He faces
the problem of slot based MapReduce system can suffers
from poor performance due to its un-optimized resource
allocation. They find the performance degraded due to first
Map and Reduce slots may empty because of pre-
configuration; sec-ond system can face the straggler problem
and third delay scheduling of MapReduce systems to
overcome this they uses following techniques to improve
performance as 1) empty slots are reallocated by using
dynamic Hadoop slot allocation (DHSA); 2) straggler
problem is solved by using speculative execution
performance balance (SEPB); 3) delay scheduling is
overcome with slot pre-scheduling.

Paper ID: NOV152318 1662

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

In [10] X. Jiong, Y. Shu, R. Xiaojun, D. Zhiyang, T. Yun, J.
Majors, A. Manzanares and Q. Xiao identified performance
problem in Hadoop Distributed File System on
heterogeneous clusters. Inspired due to performance
degradation caused by heterogeneity, they have designed
and implemented a data placement mechanism in witch input
files are fragmented and provides to heterogeneous nodes
based on their computing ca-pacities. Main approach is to
improve performance of Hadoop heterogeneous clusters.
Future research is focuses on control the data redundancy
issue and designing a dynamic data dis-tribution mechanism
for several data demanding applications working collectedly.

3. Existing System

Current years have seen an increasing amount of data
parallel computing methods such as MapReduce and

Hadoop to run data demanding applications and perform
analysis. This data location scheme can suggestively
improve the performance. Present data parallel frameworks
distribute the data using a random allocation method for
simplicity and load balance. A co-related data is probably
processed as a group by specific domain applications. Here,
we officially define the data grouping to characterize the
probability of two or more data that can be accessed as a
single group. Such data grouping can be measured by a
weight: a number that these data have previously accessed as
a group. The overall data distribution may be balanced using
Hadoop default random data placement strategy; but there is
no guarantee that the data accessed as a group is uniformly
distributed. Due to uniformly distributed grouping data,
some map tasks are either scheduled on different nodes
which remotely access the required data, or scheduled on
these data allocated nodes but have to wait in the queue.

Figure 3. Simple case showing the efficiency of data placement for MapReduce programs[1]

In Fig.3 if the data groupings are distributed by Hadoops
random strategy, the covered map tasks with either remote
data access or queuing interval are the performance barriers;
this barrier is avoided by evenly distribution of data, with the
MapReduce program.

When examine the opportunity for random data distribution
to evenly distribute the data from the same group.
Surveillance shows this possibility is affected by three
factors: 1) the number of replica for every data block in each
rack (NR); 2) the maximum number of concurrent map tasks
run on each node (NS); and 3) access patterns of the data
groups. Hadoops default random solution will reach the ideal
distribution: a) assume NR is very big, i.e. each node will
hold one copy of the data therefore the maximized
parallelism can be reached; b) assume NS is very big, i.e. all
the map tasks can run concurrently hence the performance
will not be degraded[1].

There are three portions in our scheme: a history data access
graph (HDAG) to feat system log files to understand the data
grouping information; a data grouping matrix (DGM) to
count the grouping weights among the data and produce the
improved data groupings; an optimal data placement
algorithm (ODPA) to procedure the optimal data
placement[1].

 History Data Access Graph (HDAG): HDAG is used to
produce graph description on the basis of file access
patterns, which can be obtained from the history of data
accesses. In Hadoop each cluster rack, maintains system logs
recording at Name Node for every operation of system, with
the help of files which have been accessed. A simple solution
is: observer the files which are accessed; every two
continuously accessed files will be considered in the same
group. This solution is simple for execution due to it only
needs a traversal of the Name Node log files[1].

Paper ID: NOV152318 1663

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 DGM: On basis of HDAG, we can produce a DGM witch
show the relation between every two data blocks. DGM is a
n by n matrix, where n is the number of blocks present in
system. As we mentioned earlier, same data may belongs to
group A and group B at the same time; In the DGM grouping
weight indicates how likely one data should be grouped with
another data. The relationships among the data in DGM
required making sure that blocks on the same node have
minimal chance to be in the same group[1].

 ODPA: To achieve the optimal data placement only
knowledge of data groups is not sufficient. It must require an
algorithm named ODPA to complete our system. This
algorithm is based on sub matrix for ODPA (OSM) from
clustered data grouping matrix (CDGM). OSM shows the
dependencies between the data previously placed and the
ones being placed. With the help of ODPA, DRAW can
succeed the two goals: maximize the parallel distribution of
the grouping data, and balance the complete storage
loads[1].

3.1 Algorithm 1: Bond Energy Algorithm

Table 1: Model notations

AFF Attribute Affinity matrix
QA Query Access matrix
CA Clustered Affinity matrix
DM Distance Matrix
AU Attribute Usage matrix
TSC Total Storage Cost
V Volume of data allocation measured in characters
SCij Storage cost of fragment i in site j
Aff(Ai;Aj) The affinity of attributes Ai and Aj
Freql(qk) Access frequency of a query k on site l
Accl(qk) Access per execution of query k on site l
Sij Similarity measure between Ai and Aj
MQA Minimized Query Access
SC Storage Cost
IIC Iteration Input Cluster(is fed to next iteration)
LC Leaf Cluster

Require:

Attribute Query Matrix
Query Access Matrix

Result:

 AFF Matrix
1: S ← MQA
2: for each attribute number i do
3: QSi ← sum(Sij)
4: end for
5: for each attribute number i do
6: for each attribute number j do
7: initialize n00; n11; n01; n10 by 0
8: if (i = = j) then
9: AFFij ← sum(Aj) * QS
10: else
11: for each query number k do
12: calculating n00; n11; n01; n10
13: if (n01 = = 0 and n10 > 0) or (n10 = = 0 and n01 > 0) then
14: coef ← (-1)(n01 + n10) * w1

15: else
16: coef ← (|n01 - n10|) * w1
17: end if
18: Sij (n11 + w2 * n00) / (n11 + w2 * n00) + coef
19: end for
20: end if
21: AFFij ←Si * QSi
22: end for
23: end for
24: call Function Split(AFF)

3.2 Algorithm 2 : ODPA algorithm

Input: The sub-matrix (OSM): M[n][n];Where n is the
number of data nodes;

Output: A matrix indicating the optimal data placement:
DP[2][n];
Steps:

For each row from M[n][n] do
R= the index of current, row;
Find the minimum value V in this row; A set MinSet;
MinSet = C1,V1,C2,V2; // there may be more than one
minimum value

if there is only one tuple (C1,V1) in MinSet then
//The data referred by C1 should be placed with the data
referred by R on the same node;

DP[0][R] = R;
DP[1][R] = C1;
Mark column C1 is invalid (already assigned);

Continue;

end if

for each column Ci from MinSet do
Calculate Sum[i] = sum(M[*][Ci]) ;// all the items in Ci
column

end for

Choose the largest value from Sum array;
C= the index of the chosen Sum item;
DP[0][R] = R;
DP[1][R] = C;
Mark column C is invalid (already assigned);

end for

3.3 Mathematical Model

BEA uses affinity of attributes to create clusters of attributes,
which are the most similar. It starts with Attribute Usage
(AU) and Query Access (QA) matrices generates Attribute
Affinity matrix (AFF) and finally creates Clustered Affinity
matrix (CA) by positioning and re-positioning columns and
rows of attributes. The Affinity measure is too simple. The
proposed Affinity measure in BEA is basically based on
simultaneous access of attribute Ai and attribute Aj of
relation R(A1;A2; :::;An) by query qk for every query in Q =
(q1; q2; :::; qq): In other words, Two attributes are

Paper ID: NOV152318 1664

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

considered similar if they are accessed by the same query.
This is indicated in AU by Aij = 1 and Aik = 1
simultaneously for attributes j and k accessed by query i
Considering the Affinity of attributes Ai and Aj as

aff(Ai;Aj), access frequency of a query k on site l as
freql(qk), and access per execution of query k on site l as
accl(qk); the equation for Affinity presented is as below.

In the process of splitting the bond between two attributes i
and j and the net contribution to the global affinity measure
of placing the attribute k between i and j play key roles. The
bond between attributes i and j is defined as

The net contribution of placing the attribute k between i and
j is defined as
cont(Ai;Ak;Aj)=2bond(Ai;Ak)+2bond(Ak;Aj)-2bond(Ai;Aj)

The split function generates the Clustered A_nity Matrix in
two steps.

4. Proposed System

4.1 Problem definition

Googles MapReduce and Apaches Hadoop, it is open-source
implementation, are the defected software systems for big-
data applications. A study of the MapReduce framework is
that the framework produces a large amount of intermediate
data. Such ridiculous information is thrown away after the
tasks finish, because MapReduce is incapable to utilize them.

4.2 Execution plan

Figure 4: Proposed system architecture

Fig.4 shows the scheme that identifies the source input from
which a cache item is achieved, and the operations applied on
the input, so workers produces cache item which are indexed
properly in map phase. We also have a method for reducers
to apply the cached results in the map phase to increase speed
of execution of the MapReduce job.

A worker node/process contacts the cache manager every
time before it starts processing on given input data file. The
worker process passes the file name and the operations that it

going to perform on the file to the cache manager. The cache
manager takes this message and compares it with the stored
mapping data. If there is an exact match to a cache item, i.e.,
it is the same as the file name of the request and its
operations, then the cache manager will send back a reply
enclosing the tentative description of the cache item to the
worker process.

Paper ID: NOV152318 1665

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The worker process accepts the tentative report and gets the
cache item. For further processing, the worker sends the file
to the next-stage worker processes.

5. Expected Results

Figure 5: Execution time of the system

Fig. 5 shows that DRAWs regrouped data and Hadoops
randomly placed data. The number of reducers are used so
that the reduce phase will not produce bottleneck. DRAW
finished map phase nearly about 30% earlier than the default
placed data, and the tasks overall execution time is also 25%
better by using DRAW.

In proposed system data is appended at the input file. The
size of the appended data varies and is represented as a
percentage number to the original input file size, which is in
GBs. As a result Dache can avoid computation tasks that take
extra time, which achieves more speedups. Dache is able to
complete jobs 20% faster than Hadoop in all situations. It
shows that proposed system takes less time for processing as
compare to existing system.

In proposed system CPU utilization ratio of program is
calculated by averaging the CPU utilization ratio of
MapReduce job processing time. Hadoop 30% takes more
CPU cycles than Dache, which is expected by the CPU-
bound nature of the execution procedure. It is clear that
Dache saves a major amount of CPU cycles, which is proved
by the much lower CPU utilization ratio.

6. Conclusion

The proposed system in this paper uses the Hadoop
implementation of MapReduce which is responsible for
parallel processing on multiple compute nodes. DRAW can
succeed the two goals: maximize the parallel distribution of
the grouping data, and balance the complete storage loads.
An observation of the MapReduce framework is that the
framework generates a large amount of intermediate data.
Such abundant information is thrown away after the tasks
finish, because MapReduce is unable to utilize them. So we
implement Dache in Hadoop by extending relevant
components. Our system eliminates all the duplicate tasks in
MapReduce jobs and it is responsible for the performance
enhancement of the system. In the future, we plan to adapt

our framework to more general application scenarios and
implement the scheme in the Hadoop project.

References

[1] Jun Wang, Qiangju Xiao, Jiangling Yin, and Pengju

Shang, ”DRAW: A New Data-gRouping-AWare Data
Placement Scheme for Data Inten-sive Applications
With Interest Locality”, IEEE TRANSACTIONS ON
MAGNETICS, VOL. 49, NO. 6, JUNE 2013.

[2] Rongxing Lu, Hui Zhu, Ximeng Liu, Joseph K. Liu, and
Jun Shao, ”Toward Efficient and Privacy-Preserving
Computing in Big Data Era”, IEEE Network July/August
2014.

[3] Qi Chen, Cheng Liu, and Zhen Xiao, ”Improving
MapReduce Perfor-mance Using Smart Speculative
Execution Strategy”, IEEE TRANSAC-TIONS ON
COMPUTERS, VOL. 63, NO. 4, APRIL 2014.

[4] Shanjiang Tang, Bu-Sung Lee, Bingsheng
He,”DynamicMR: A Dy-namic Slot Allocation
Optimization Framework for MapReduce Clus-ters”,
DOI 10.1109/TCC.2014.2329299, IEEE Transactions
on Cloud Computing,2168-7161 (c) 2013 .

[5] Daniel E. Oleary, ”Artificial Intelligence and Big
Data”, 1541-1672/13/$31.00 2013 IEEE, iEEE
iNTElliGENT SYSTEMS Published by the IEEE
Computer Society.

[6] N. Monica, K. Ramesh Kumar, ”Survey on Big Data by
Coordinating Mapreduce to Integrate Variety of Data”,
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

[7] Jeffrey Dean, Sanjay Ghemawat, ”MapReduce:
Simplified Data Process-ing on Large Clusters”,
unpublished.

[8] Kudakwashe Zvarevashe, Mainford Mutandavari, Trust
Gotora, ”A Sur-vey of the Security Use Cases in Big
Data”, International Journal of Innovative Research in
Computer and Communication Engineering(An ISO
3297: 2007 Certified Organization)Vol. 2, Issue 5, May
2014

[9] D.Usha , Aslin Jenil A.P.S, ”A Survey of Big Data
Processing in Perspective of Hadoop and Mapreduce”,
International Journal of Current Engineering and
Technology E-ISSN 2277 - 4106, P-ISSN 2347 - 5161

[10] X. Jiong, Y. Shu, R. Xiaojun, D. Zhiyang, T. Yun, J.
Majors, A. Man-zanares, and Q. Xiao, ”Improving
mapreduce performance through data placement in
heterogeneous hadoop clusters”, Apr. 2010

[11] B.Thirumala Rao, Dr. L.S.S.Reddy, ”Survey on
Improved Scheduling in Hadoop MapReduce in Cloud
Environments”, International Journal of Computer
Applications (0975 - 8887) Volume 34- No.9,
November 2011 29

[12] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M.
Hellerstein, ”MapReduce Online”, unpublished.

[13] Nimrod Megiddo and Dharmendra S. Modha, “ARC: A
SELF-TUNING, LOW OVERHEAD REPLACEMENT
CACHE”, USENIX Association, 2nd USENIX
Conference on File and Storage Technologies.

[14] Hossein Rahimi, Fereshteh-Azadi Parand , Davoud
Riahi, "Hierarchical simultaneous vertical fragmentation

Paper ID: NOV152318 1666

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

and allocation using modifieded Bond Energy Algorithm
in distributed databases", Saudi Computer Society, King
Saud University, Applied Computing and Informatics

Author Profile

Sushant Nagavkar received the B.E. degree in
Information Technology with first class from DKTE
college of Engineering and textile Ichalkaranji under
Shivaji University Kolhapur in 2013. Now I am with
GHRCEM college of Engineering and Management,

Ahemadnagar, Maharashtra under Savitribai Phule Pune University,
appearing M.E. degree in Computer Networks.

Paper ID: NOV152318 1667

