
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

FPGA Implementation of Connected Component
Watershed Image Segmentation

Megha Sharma

1
, Seema Verma

2

1Research Scholar, Electronics Department, Banasthali University, Rajasthan

2Associate Professor, Electronics Department, Banasthali University, Rajasthan

Abstract: Image Segmentation is an important process for image processing analysis and for computer vision. A segmentation problem

includes the partitioning of an image into a number of homogeneous segments and union of any two segments forms a heterogeneous

segment. There are various methods which deal with segmentation and feature extraction like Markova random field based technique,

edge based technique, histogram based technique etc. However, the segmentation is a challenging task because of the variety and

complexity of images. To reduce the complexity of the hardware architecture, watershed transform using connected component has been

used for image segmentation.

Keywords: image segmentation, watershed transform, connected component, FPGA

1. Image Segmentation

Image segmentation means division of an image into
meaningful structures. It is process of extracting and
representing information from the image to group pixels
together with region of similarity [3]. Sonka et al. define the
goal of segmentation as “to divide an image into parts that
have a strong correlation with objects or areas of the real
world contained in the image" [2].

All the objects of the original image can be identified in
segmented image with their boundaries. There are many
techniques available for the image segmentation. Examples
are, threshold based segmentation, edge based segmentation,
region based segmentation, clustering based image
segmentation, markov random field based segmentation and
hybrid techniques. These segmentation methods differ from
their computation complexity and segmentation quality. A
segmentation algorithm has been proposed which is feasible
to implement in hardware with the minima use of hardware
resources (slices/gates), gives best segmentation quality and
has possibility to be used for real time image processing
applications.

Computation complexity is one of the important criteria for
image segmentation which should be considered carefully
when real time image segmentation is required.
Computational complexity is defined as number of
arithmetical operations required for processing single image
frame. If the segmentation algorithm is computationally
more complex then it needs more computational hardware
resources. The best approach should be less computational
complexity, less input parameter dependency, minimum
segmentation time and provide efficient segmentation output
for real time applications.

2. Watershed Image Segmentation

Watershed based image segmentation algorithms are less
computational complex and provide very good segmentation
results. It is possible to implement in the hardware using
pipelined and/or parallel architecture for real time

applications because of the independent mathematical
computations flow of the algorithms.

Watershed algorithms based on watershed transformation
have mainly two classes. The first class contains the
flooding based watershed algorithms and it is a traditional
approach where as the second class contains rainfalling
based watershed algorithms. Many algorithms have been
proposed in both classes but connected components based
watershed algorithm [1] shows very good performance
compared to all others. It comes under the rainfalling based
watershed algorithm approach. It gives very good
segmentation results, and meets the criteria of less
computational complexity for hardware implementation.

There are mainly three stages as indicated by Figure 1 for
watershed based image segmentation approach. First stage is
defined as pre-processing, second stage as watershed based
image segmentation and last stage as post-processing. Input
image is first processed by the pre-processing stage, and
then given to watershed based segmentation stage. The
resulting image is post processed by the final stage to get a
segmented image. Pre-processing and post-processing are
necessary to overcome the problem of over-segmentation in
watershed based image segmentation.

Figure 1: Block diagram of watershed based image

segmentation.

The basic concept of watershed algorithm used for the image
segmentation is to find the watershed lines. Imagine, holes at

Paper ID: NOV152304 1563

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

each regional minimum, and water is flooded from bottom
into these holes with constant rate. Water level will rise in
the topographic surface uniformly. When the rising water in
different catchment basins is going to merge with nearby
catchment basins then a dam is built to prevent all merging
of the water. Flooding of water will reach at the point when
only top of the dams are visible above water line. These
continuous dam boundaries are the watershed lines as shown
in figure 2.

Figure 2: Watershed lines and catchment basin [4]

3. Watershed Algorithm Based on Connected

Components

The basic concept of connected components based algorithm
is explained by Figure 3. The original 6 x 6 image has three
local minimum values indicated by gray boxes. If the
component (pixel) is not a local minimum then it is
connected to its lowest neighbours as shown by arrows in
Figure 3b, where m indicates a local minimum. All
components directed towards the same local minimum make
a segment and are given a same label value in Figure 3c.

(a) The original image

(b) Each pixel connect to lowest minimum
(c) The image with labels

Figure 3: Basic concept of connected components approach

4. Hardware Implementation

In this section, hardware architectures for the pre-processing
stage and segmentation stage are discussed for a FPGA
implementation. Initially, image is processed by the pre-
processing module and then the pre-processed image is
given to the segmentation module. Block diagram of
hardware implementation is show in Figure 4. The original
image is loaded in the external memory for processing.
Image pixels (top left to bottom right) are stored in the
external memory at subsequent addresses (starting address to
end address). Stream cache module is used for read and
write operations with the external memory and image
processing module (pre-processing or segmentation). Stream
cache, pre-processing and segmentation module are
discussed in detail in following sections. VHDL component
descriptions of all modules are given in the appendix. Image
size (height and width) is generic parameter for all modules.

Figure 4: Block Diagram of Hardware implementation

A. Stream Cache Module

Stream cache module is used to make image data
communications with the external memory which is
designed by Robert Bosch GmbH. The basic concept of the
stream cache module is explained in this section [5].

Top level controller module (Pre_processing_Ctrl) makes
interface with the stream cache module and slave controller.
Pre-processing module is connected to this top level
controller module. G_SYSBUS_AWIDTH and
G_APPL_DWIDTH are generics for the system address bus
and application data bus, both are set to constant value of 32.
Pre-processing module gets P_ctrl_start_sl signal from the
slave controller which notifies to start reading of the data
from external memory using the stream cache.

In read data operations, stream cache takes 64 bytes burst
from the external memory during initialization. This packet
is stored in the internal memory (block RAMs) of FPGA.
When RD_re signal is given then data is read from this
internal memory. When the number of bytes in the internal
memory are lower than constant value (e.g. 32), then the
stream cache reads new packet from the external memory. In
write data operations, data is written to internal memory
when WR_we signal is activated.

When number of bytes are 64, and if data bus is available
then all 64 bytes are written to the external memory. If data
bus is busy then output data can be written to the internal
memory buffer until buffer is not full. If internal memory
buffer gets full and data bus is still busy then it is necessary
to deactivate the WR_we signal. All signals of the stream
cache module are initialized with the zero. First, starting
address of memory read is set in RD_Start_Addr signal.
After getting P_ctrl_start_sl signal high for one clock cycle,
RD_Init signal is set to high for one clock cycle.

RD_Busy signal defines busy status of the memory data bus
or not enough space in the internal memory buffer and it is
high in busy mode. RD_Busy signal goes high after the
initialization. When RD_Busy signal goes low again which
indicate that initialization is finished. When data is required
to read, RD_re signal is set to high for given number of
clock cycles. If RD_re signal is set to high only for one
clock cycle then it reads only one data and load it into
RD_Data signal. It is needed to check RD_Busy signal every
time before RD_re signal is given and RD_Busy should be
low when RD_re signal is asserted high.

B. Pre-processing Module

The input gray scale image is given to pre-processing
module from the external memory. The pre-processing
module gets one new pixel on every clock cycle from the
external memory, processes it and writes back a processed

Paper ID: NOV152304 1564

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

pixel to the external memory. Pre-processing module is
designed using a pipeline concept in such a way that it
processes a new pixel on each clock cycle. This module has
components like serializer, 3 x 3 moving window module,
median filter, morphological gradient, thresholding and
Serial-In-Parallel-Out (SIPO) shift register module. Flow of
the input data and controller signals from one module to
another is shown in below figure 5.

The pixel size is 8 bit in the gray scale image but only 32 bit
data read or write operations are performed with the external
memory on every clock cycle. There are total four pixels
available on each clock cycle. The reason behind 32 bit data
reading

Figure 5: Stream cache - initialization, read, write and flush

operations

or writing on each clock cycle is to make read and write
operations compatible with the segmentation module
because segmentation module is designed to process 32 bit
data on each clock cycle. Stream cache module can not
switch to different data width format for read and write
operations during the run time, so either it needs to set for 8
bits, 16 bits or 32 bits data width.

C. Serializer

As the pre-processing module is designed to process only
single gray image pixel (8 bit) per clock cycle, serializer is
needed to serialize the data. It loads 32 bit data in one clock
cycle and provides same data as a stream of four 8 bit data in
four clock cycles (one clock cycle for one 8 bit data). In 32
bit data, eight most significant bits (MSB) are part of the
first pixel. Eight bits are shifted left on each clock cycle, and
a new pixel is shifted to the MSB position and taken as an
output data. The schematic diagram is shown in Figure 6.
Control and data inputs are captured and new output data is

formed on rising-edge of the clock signal. Reset signal is
active low synchronous reset which reset the serializer.
When enable is deasserted (Low), all the synchronous inputs
are ignored and internal data of serializer are not changed.

Figure 6: Serializer module schematic

Input data (32 bit width) is given to data in signal and 8 bit
output data is provided by data out signal. Valid signal is
asserted high when first 8 bit output data of the given 32 bit
input data is ready. Finish signal goes high when total
number of output data from the serializer are equal to the
image size.

D. Segmentation Module

Segmentation module performs computation for the image
segmentation. RD_Busy signal and WR_Busy signal
indicate whether memory data bus is free or busy for data
processing with external memory. When segmentation
module cannot get the input data or cannot write the output
data because of the memory data bus is busy with data
processing of other modules, then this module needs to be
halt. When data bus is available again for the segmentation
module, then it can resume computation from the last halted
state.

Figure 7: Segmentation module schematic

Figure 7 represents schematic diagram of the segmentation
module. It has pixel width, image row width, image height,
VMAX and LMAX as generic parameters. Enable module
signal is used to enable all ports and internal digital logics.
Input data is given to Data In signal and output data is
provided by Data_Out signal. Enable data in signal indicates
that when it is asserted, input data is given to internal
register from the Data In signal. Output Valid signal is
activated when first valid data is available on the Data_Out
signal. When one scan of the image read, segmentation
computation and write back to the external memory are
completed, then finish signal is asserted for one clock cycle.
Next Scan represents that subsequent image scans are

Paper ID: NOV152304 1565

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

required or not for the image segmentation. When Next Scan
is active high after the finish signal, then subsequent image
scans are necessary for the segmentation. When it is low,
then the subsequent image scans are not required for the
segmentation and segmentation of the given image is
completed.

State Machine for Segmentation Module

Three state machines are used for data and control signals
flow. First state machine is needed for the memory read
operations only during the first image scan, second one is
needed for the memory read operations for all subsequent
image scans except the first image scan, and third one is
needed for the memory write operations for all image scans.
S First read signal (type_std_logic) is used to notify whether
it is a first image scan or not. It initializes with high and after
the first image scan is finished,

Figure 8: State diagram of memory read operation (only for

first scan using serializer) for segmentation module

it is set to low. Segmentation module gets valid input data in
read data state and writes back valid output data in write
data state.

Figure 8 shows state machine diagram for the memory read
operations during the first image scan. Serializer module is
used in the first image scan. Initially, state is in Idle1 state.
Starting address location of the memory for read operations
and memory read in forward direction signal are set in the
Idle1 state. When slave controller asserts P_ctrl_start_sl
signal, state is changed to RD_Init1 state. RD_Init1 state
waits until P_RD_busy signal goes low, and after that state
moves to the Read_Data state. Read request is given to the
external memory in the Read_Data state. Serializer module
asserts Serializer data_out_ctrl signal which indicates that
new input data (32 bit) is possible to read from the external
memory and load into the serializer module. Serializer
module gives one output data (8 bit) on each subsequent
states, Serializer S1, Serializer S2, Serializer S3 and
Serializer S4. Serializer data out ctrl signal is asserted high
after each last 8 bit output data for the given 32 bit input
data. Serializer module activates the valid data signal with
each output data which notifies the segmentation module to
load new 32 bit input data. Serializer module counts number
of output data and when this number is equal to the image
size, it asserts Serializer read_finish signal. After the
Serializer read_finish signal is activated for a one clock
cycle, data read from the memory is stopped and state moves
to Finish1 state. S _First _read signal is set to low in Finish1
state, so data is given directly to the segmentation module in
next subsequent scans without using the serializer module.

5. Performance Measurements

Connected components based watershed image
segmentation algorithm gives over-segmentation without
using the pre-processing stage. Watershed based image
segmentation is only applied to the gradient image. Original
pepper image is converted to the gradient image which is
segmented without applying median filter and thresholding,
and output image is over-segmented as shown in Figure 9b.

Total number of labels decrease as the threshold value is
increased. If threshold value is selected very high, then some
boundaries of segments are not preserved. Figure 9 shows
segmented images with different threshold value for the
pepper image (256x 256). Total numbers of labels in over-
segmented image of Figure 9b are 2987 whereas after using
median filter and the threshold value of 12, number of labels
are reduced to 660.

(a) Original image (256 x 256)

(b) Segmentation of gradient image without median filter
and thresholding

(c) Segmented image (Threshold=12)
(d) Segmented image (Threshold=14)

Figure 9: Segmentation results with different threshold
values for pepper image (256 x 256)

Synthesis results of the pre-processing and segmentation
modules are discussed under this section. The target FPGA
device for synthesis is Xilinx “Virtex-4" FPGA family with
device id “xc4vfx60", package id “12ff672 " and speed
grade “-12". The size of input image is 512 x 512 pixels.
The frequency unit is MHz (Mega Hertz) and time unit is ms
(mili seconds) or ns (nano seconds).

Table 1 describes synthesis results for the pre-processing
stage. Maximum operating frequency of the pre-processing
design is 228.59 MHz. In pre-processing module, one pixel
is processed in single clock cycle. An image (512 x 512)
takes 1.15 msec, if the system runs on the maximum
operational frequency.

Total image processing time = Number of pixels ×Minimum
period= 512 × 512 × 4:375 ns
= 1:15 ms

Paper ID: NOV152304 1566

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Table 1: Pre-processing module synthesis result

6. Conclusion

Different images are tested for segmentation quality and
execution time. Segmentation results are visually acceptable
and almost identical segmentation results can always be
obtained using the given implementation. The computation
time for a 512 x 512 image is about 35 to 45 milliseconds
with the implemented segmentation architecture. The use of
external memory can also be avoided by using the FPGA
device with the larger internal memory. Single pipelined
segmentation unit uses very few hardware resources, so it is
possible to use multiple segmentation units to achieve higher
performance.

References

[1] A. Bieniek, A. Moga, An e_cient watershed algorithm
based on connected components, Pattern Recognition 33,
pp.907-916, 2000.

[2] M. Sonka, V. Hlavac, and R. Boyle, Image Processing,
Analysis, and Machine Vision, PWS Publishing, 1999.

[3] Dr. Sukhendu Das, Lecture notes, IIT Madras,India,
http://vplab.iitm.ac.in/courses/CV_DIP/PDF/lect-
Segmen.pdf

[4] MATLAB Notes,
http://www.mathworks.de/company/newsletters/news_no
tes/win02/watershed.html

[5] Dang Ba Khac Trieu and Tsutomu Maruyama”

Implementation of a parallel and pipelined watershed
algorithm on fpga” ieee transaction of computer vision,
2006

Paper ID: NOV152304 1567

