Excess Molar Volumes and Refractive Indices of Tetrahydrofuran, Dichloromethane, Trichloromethane, 1, 2-Dichloroethane, Trichloroethane and 1, 1, 2, 2-Tetrachloroethane

C. P. Gupta¹, Rajesh Singh², Ram Janam Gupta³

Chemistry Department, St. Andrew's College Gorakhpur -273001(India)

Abstract: Excess molar volumes V_m^E at T= 303 .15 k and refractive indices n at T= 298.15K have been measured for binary liquid mixtures of tetrahydrofuran (C₄H₈O) with dichloromethane (CH₂Cl₂), trichloromethane(CHCl₃), 1,2- dichloroethane (CH₂ClCH₂Cl), trichloroethane (CH₂ClCHCl₂) and 1,1,2,2-tetrachloroethane(CHCl₂CHCl₂). The values of V_m^E have been found to be negative throughout the entire range of compositions for XC₄H₈O +(1-X) CHCl₃, XC₄H₈O +(1-X) CHClCCl₂ , and XC₄H₈O +(1-X) CHCl₂CHCl₂. For XC₄H₈O +(1-X) CH₂Cl₂ the V_m^E have been found to be very slightly positive at very low values of molar fractions X

of C_4H_8O , and negative at the higher values of X with inversion of sign of V_m^E occurring at X = 0.15. For $XC_4H_8O + (1-X)$ $CH_2ClCH_2Cl_1$ the V_m^E has been found to be positive at lower values of X and negative at higher values of X, with inversion of sign of T_{m}^E

 V_{m}^{E} occurring at X = 0.7. The values of V_{m}^{E} and n have been fitted with the representative equations. The V_{m}^{E} has been discussed in the light of the existence of electron donor- acceptor interaction between the components.

Keywords: Excess molar volumes, Refractive indices, Mixture and tetrahydrofuran.

1. Introduction

This work continues the study programme devoted to mixture of n-donor component and chloroalkane, or chloroalkene. Such binary mixture is of considerable interest from the viewpoint of the existence of an electron donor-acceptor interaction between the components in the liquid state. In earlier work, Nath and Rashmi ^{1,2} have measured excess molar volumes V_m^E speed of sound (u) relative permittivities E_r and viscosities (n) of binary liquid mixture of 1,4-dioxane ($C_4H_8O_2$) and dichloroethane (CH₂Cl₂),or 1,2dichloroethane (CH₂ClCH₂Cl) or trichloroethane (CHClCCl₂), or tetrachloroethane (CCl₂CCl₂), or cyclohexane (o - C_6H_{12}) at various temperature. Nath³ has also measured the vapour pressures of this mixture. In addition Nath and Pandey ⁴ have measured $\mathbf{V}_{\mathbf{m},and}^{\mathbf{E}}$ has measured u, for mixtures of $C_4H_8O_2$ and 1,1,2,2- tetrachloroethane (CHCl₂CHCl₂) at T=303.15k. This work reports the measurements of V_m^E at T=303.15K, and of refractive indices n_D at T=298.15K for binary liquid mixture of tetrahydrpfuran (C₄H₈O) and CH₂Cl₂ or trichloromethane (CHCl₃) or CH₂ClCH₂Cl or CHClCCl₂ or CHCl₂CHCl₂ and interprets the data obtained. Since organic liquid mixture are encountered in variety of areas and detailed studies about their mixing behavior is important from both practical and fundamental point of view, the results reported here in appear pertinent.

2. Experimental

HPLC grade chemicals dichloromethane and 1,2dichloroethane, both of stated minimum purity of 99.8% (GLC), uv spectral grade trichloroethane of stated minimum purity of 99.5% (GLC), AR grade 1,1,2,2tetrachloroethane of stated minimum purity of 99% (GLC) were all obtained from Sisco Research Laboratories, Mumbai, India. CH2Cl2, CH2ClCH2Cl2, and CHClCHCl2 were used without further purification. Liquid CHCl₂CHCl₂ was washed with 10% potassium carbonate solution, dried over anhydrous calcium chloride and then distilled fractionally. HPLC grade tetrahydrofuran of stated minimum purity of 99.8% (GLC) and HPLC grade trichloromethane of stated minimum purity of 99.5% (GLC) were obtained from qualigens fine chemicals Mumbai, C₄H₈O₂ was used without further purification. Liquid CHCl3 was shaken several times with distilled water to remove ethanol present as a stabilizer, dried over anhydrous calcium chloride, then distilled fractionally, and stored in dark colored bottle covered with black cloth.

The excess molar volumes, V_m^E were measured with an uncertainty of the order of ± 0.002 cm³. Mol,⁻¹ using a two-limbed pyrex glass dilatometer that was similar to that used by Nath et al⁶ amount of the two liquid components were confined separately over mercury in the absence of air spaces in the two limbs of the dilatometer, which was mounted on a stand and immersed in thermostat water bath, Temperature was controlled with

an a constant of ± 0.001 K. The mixture of the two liquids was achieved by rocking the cell back and forth through a definite angle, and the mercury levels in the capillary of the dilatometer were noted using a cathetometer with an accuracy of ± 0.001 cm.

The refractive indices (sodium- D line) n_D were measured with an accuracy of ± 0.0002 units, using a thermostated Abbe (Carl Zeiss) refractometer.

3. Results and discussion

The values of V_m^E for the present mixture of C_4H_8O and CH₂Cl₂ or CHCl₃ or CH₂ClCH₂Cl or CH₂ClCHCl₂ or CHCl₂CHCl₂ at T= 303.15K are reported in table 1, whereas the values of the refractive indices n_D of these mixtures at T = 298.15K are reported in Table 2, where X refers to the mole fraction of C₄H₈O in the various mixture. X has an uncertainty of \pm 0.0001. The present values of n_D of C₄H₈O, CH₂Cl₂ , CHCl₃, CHClCHCl₂, CHCl₂CHCl₂, and CHCl₂CHCl₂ are 1.4050, 1.4212, 1.4428, 1.4420, 1.4250 and 1.4916 respectively at T = 298.15K, as compared with the corresponding values 1.40496, 1.42115, 1.44293, 1.4421, 1.4748 and 1.49168 at T= 298.15K respectively for the various liquids in the same order, as reported by Riddick and Banger⁸, and Timmermans 9 The experimental values of V_m^E for the various systems of C₄H₈O have been plotted against the mole fraction x of C₄H₈O in Fig. 1, and have been fitted by the method of least squares with a Radlich – Kister¹⁰ type equation.

$$V = x (1-x) \sum A_{J} (2x - 1)^{J-1}$$
(1)

The values of the coefficients A_J of Eq. 1 along with the standard deviations V_m^E for the various systems are given

in Table 3.

The values of the refractive indices n_D for the various systems have been fitted by the method of least squares with the equation

$$n_{\rm D} = \sum B_{\rm J} X \tag{2}$$

The values of the coefficients B_J of Eq. (2), along with the standard deviations (n_D) are given in Table 4.

The present data show that the values of V_{m}^{-} at T=303.15K are negative throughout the entire range of composition for X C₄H₈O +(1-X) CHCl₃ X C₄H₈O +(1-X) CHClCCl₂ and X C₄H₈O +(1-X) CHCl₂CHCl₂. For xC_4H_8O +(1-X) CH_2Cl_2 the V_m^E is found to be very slightly positive a low values of X , and negative at high X values with inversion of sign of V_m^E from positive to negative values occurring at $X \approx 0.15$. Also for XC_4H_8O +(1-X) CH₂ClCHCl, the V_m^E is found to be positive at lower values of X, and very slightly negative at high values of X, with inversion of sign from positive to negative values occurring at V_{m}^{E} X \approx 0.7. At X =0.5, the values of V system of C₄H₈O have the following various present sequences:

$CH_2ClCH_2Cl > CH_2Cl_2 > CHClCCl_2 > CHCl_3 >$ CHCl₂CHCl₂

The values of V_m^E may be interpreted in terms of the strength of intermolecular interaction between the molecules of the compositions of a given system. The negative values of $\mathbf{V}_{\mathbf{m}}^{\mathbf{E}}$ for a given system are attributed to a closer approach of unlike molecules of a system, leading to reduction in volume of mixture .The different types of forces that can exist between the molecules of the components of given systems are dispersion forces and charge transfer, hydrogen bonding, dipole - dipole, and dipole- induced dipole interaction. Dispersion forces leads to attraction between the molecules, and the relative magnitudes of the 1-1,2-2,1-2 type interactions between the molecules of components 1 and 2of a mixture are important in determining the thermodynamic excess properties. If the components of a mixture do not differ greatly in shape and size, the dispersion forces should make positive contributions to V_{m}^{E} . However, the chargetransfer, hydrogen bonding, dipole- dipole and dipoleinduced dipole interactions should normally lead to negative contributions to V_m^E . Dispersion forces exist between the components of all systems, and for a given system in which there is more than one type of interactions between the molecules of the components, the values of V would be due to the net result of the contributions of all types of interactions. The highly negative values of V_{m}^{E} for X C₄H₈O +(1-X) CHCl₃, X C₄H₈O +(1-X) CHClCCl₂ and X C₄H₈O +(1-X) CHCl₂CHCl₂ show that C_4H_8O forms strong intermolecular complexes with CHCl₃, CHClCCl₂ and CHCl₂CHCl₂ in the liquid state. The specific interaction leading to the formation of complexes of C4H8O with CHCCl₃, CHClCCl₂, and CHCl₂CHCl₂ in the liquid state may be visualized as being due to the formation of hydrogen bonding between the components on account of interaction of H atoms in CHCl₃, CHClCCl₂ and CHCl₂CHCl₂ with the lone -pair electrons on the oxygen atom of C₄H₈O, as it is know ^{11,12} that 1,4- dioxane (C₄H₈O₂) forms the complexes C₄H₈O₂. CHCCl₃ and C₄H₈O₂. 2CHCCl₃ with CHCCl₃ via the interaction of H atom of CHCCl₃ with lone - pair electrons on the oxygen atoms of C₄H₈O₂. There is all likelihood of the formation of the strong hydrogen bonding between the molecules of C_4H_8O and CH_2Cl_2 , or CH_2ClCH_2Cl . The values of V_m which are slightly positive at low x values and slightly negative at high X values, do not support the viewpoint of the existence of the formation of strong complexes of C₄H₈O with CH₂Cl₂ and CH₂ClCHCl in the liquid state . This may be thought of being due to the predominance of the contributions to V_m^E arising from non – specific

interactions over those from specific interactions between the components of the systems X C_4H_8O +(1-X) CH_2Cl_2 and X C₄H₈O +(1-X) CH₂ClCH₂Cl.

Volume 4 Issue 12, December 2015

4. List of Symbols

 $A_J =$ Coefficients of Redlich – Kister type equation fitting the values of V AR = Analytical reagent

- $B_J =$ Coefficients of the equation fitting the values of n_D
- $\epsilon_{\rm r} ==$ Relative permittivity
- GLC == Gas liquid chromatography
- HPLC == High performance liquid chromatography
- n-donor == Lone pair electron donor
- $n_D = Refractive index for sodium D light$
- $\delta(n_D) == \text{Standard deviation in } n_D$
- $\eta == Dynamic viscosity$
- T == Temperature
- U == Speed of sound

UV == Ultraviolet

 $V_{m}^{E} = Excess molar volume$ $\delta(V_{m}^{E}) = Standard deviation in V_{m}^{E}$

5. Acknowledgements

The authors are thankful to the Head of the Chemistry Department, DDU Gorakhpur University, Gorakhpur and Principal of St. Andrew's College Gorakhpur, for providing laboratory facilities. Thanks are also due to the University Grants Commission, New Delhi, India, for financial support.

Table: 1 Experimental values of the excess molar volumes,	V_{m}^{L} , For C ₄ H ₈ O + CH ₂ Cl ₂ , or CHCl ₃ , or CH ₂ ClCH ₂ Cl, or
CHClCCl ₂ , or CHCl ₂ C	HCl_2 at T= 303.15k

X	$\frac{V_{m}^{E}}{(m^{3}m^{2}h^{2})}$	Х	V_m^E (cm ³ .mo	ol-1)	Х		$V_{\rm m}^{\rm E}$	ol-1)	X		$V_{\rm m}^{\rm E}$	nol-1)
ХСН	$(\text{cm}^2,\text{mol}^{-1})$						(cm .m	01)			(cm .	
0.0383	0.002	0.3461	-0.024		0.601	5	-0062		0.52	11	-0.053	
0.0784	0.004	0.3851	-0.034		0.664	9	-0.063		0.89	29	-0.038	
0.1147	0.005	0.4455	-0.042		0.729	6	-0.060		0.93	58	-0.025	
0.2466	-0.010	0.4876	-0.049		0.755	5	-0.059		0.94	-28	-0.019	
0.2958	-0.017	0.5433	-0.058		0.776	5	-0.059		0.97	65 -0.009		
$XC_4H_8O + ($	1-X) CHCl ₃	•										
0.0538	-0.105	0.2986	-0.352		0.555	6	-0.375		0.80	15	-0.226	
0.0877	-0.160	0.3514	-0.377		0.607	2	-0.0357		0.85	18	-0.179	
0.1463	-0.236	0.4262	-0.392		0.665	1	-0.335		0.90	50	-0.120	
0.1970	-0.283	0.4605	-0.393		0.711	0	-0.302		0.96	02	-0.053	
0.2510	0.324	0.5100	-0.385		0.750	1	-0.270		0.97	'85	-0.049	
$XC_4H_8O + ($	1-X) CH ₂ ClCH ₂ Cl											
0.0506	0.036	0.2917	0.087		0.553	9	0.036		0.31	62	-0.013	
0.0892	0.054	0.3589	0.081		0.594	7	0.021		0.37	14	-0.015	
0.1383	0.070	0.3901	0.070		0.655	0	0.010		0.89	52	-0.015	
0.1926	0.083	0.4419	0.059		0.719	2	-0.002		0.95	63	-0.009	
0.2633	0.085	0.4928	0.049		0.763	5	-0.009					
$XC_4H_8O + ($	1-X) CHClCCl ₂											
0.0529	-0.097	0.3149	-0.341		0.569	3	-0.376		0.86	82	-0.205	
0.1112	-0.178	0.3708	-0.361		0.630	0	-0.367		0.89	94	-0.164	
0.1814	-0.258	0.4250	-0.374		0.723	6	-0.329		0.95	05	-0.092	
0.2181	-0.285	0.4764	-0.380		0.775	7	-0.297					
0.2603	-0.310	0.5256	-0.378		0.831	2	-0.242					
XC ₄ H ₈ O +	(1-X) CHCl ₂ CHCl ₂	2										
0.0815	-0.156	0.3504		-0.538		0.65	48	-0.583		08799)	-0.276
0.1385	-0.254	0.4467		-0.610		0.70	57	-0.541		0.918	8	-0.198
0.1800	-0.324	0.5066		-0.621		0.76	09	-0.470				
0.2503	-0.428	0.5589		-0.624		0.30	77	-0.402				
0.2814	-0.470	0.6061		-0.613		0.83	99	-0.348				

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Table: 2 Experimental values of the refractive indices, n_D of $(C_4H_8O + CH_2Cl_2, CHCl_3, CH_2ClCH_2Cl, CHClCCl_2, CHClCCl_2, CHCl_3, CH_2ClCH_2Cl, CHCl_3, CH_2ClCH_2Cl, CHClCCl_2, CHCl_3, CH_2ClCH_2Cl, CHClCCl_2, CHCl_3, CH_2ClCH_2Cl, CHCl_3, CH_2ClCH_2Cl, CHClCCl_2, CHCl_3, CH_2ClCH_2Cl, CHCL_3, C$ $CHCl_2CHCl_2$) at T= 298.15 K

Х	n _D	Х	n _D	Х	n _D	Х	n _D	
	$XC_4H_8O + (1-X)CH_2Cl_2$							
0.0856	1.4198	0.2934	1.4166	0.5330	1.4125	0.8044	1.4083	
0.1188	1.4190	0.3479	1.4155	0.5855	1.4118	0.8523	1.4073	
0.1707	1.4183	0.3883	1.4148	0.6357	1.4109			
0.2156	1.4176	0.4384	1.4140	0.6866	1.4100			
0.2527	1.4171	0.4835	1.4132	0.7449	1.4090			
			XC ₄ H ₈ O +	-(1-X) CHCl ₃				
0.1089	1.4392	0.3008	1.4325	0.5020	1.4252	0.7381	1.4153	
0.1509	1.4379	0.3604	1.4304	0.5450	1.4237	0.7961	1.4130	
0.2041	1.4360	0.3981	1.4289	0.6455	1.4192			
0.2550	1.4342	0.4473	1.4273	0.6929	1.4173			
			XC ₄ H ₈ O +(1	-X) CH ₂ ClCH ₂ Cl				
0.1091	1.4393	0.3370	1.4330	0.6008	1.4240	0.8834	1.4118	
0.1405	1.4386	0.3873	1.4314	0.6355	1.4227			
0.2401	1.4360	0.4275	1.4300	0.6796	1.4208			
0.2905	1.4344	0.4898	1.4279	0.7909	1.4162			
			XC ₄ H ₈ O +(1-X) CHClCCl ₂				
0.1146	1.4689	0.3363	1.4570	0.5704	1.4408	0.8036	1.4222	
0.1664	1.4664	0.3691	1.4546	0.6660	1.4336	0.8469	1.4134	
0.2224	1.4634	0.4177	1.4514	0.7137	1.4298			
0.2686	1.4608	0.4724	1.4478	0.7576	1.4260			
$XC_4H_8O + (1-X) CHCl_2CHCl_2$								
0.0762	1.4875	0.3455	1.4702	0.6517	1.4445	0.9067	1.4166	
0.1338	1.4844	0.4582	1.4618	0.6829	1.4415	0.9525	1.4112	
0.2293	1.4784	0.5079	1.4576	0.7536	1.4340			
0.2444	1.4774	0.5440	1.4544	0.8257	1.4260			
0.3057	1.4734	0.6073	1.4486	0.8535	1.4228			

Table: 3 Values of the coefficients A j of equation-1 and the standard deviations δ (V_{m}^{E}) for (C₄H₈O + CH₂Cl₂, CHCl₃, CH₂ClCH₂Cl, CHCl₂CHCl₂, CHCl₂CHCl₂) at T= 303.15 K

System	A		A3	A4	A5
	(cm ³ .mol ⁻¹)	(cm ³ .mol ¹)	(cm ³ .mol ¹)	(cm ³ .mol ⁻¹)	(cm ³ .mol ¹)
XC ₄ H ₈ O +(1-X) CH ₂ Cl ₂	-O.19860	-0.27289	0.02878	0.00421	0.0016
XC ₄ H ₈ O +(1-X) CHCl ₃	-1.54754	-0.24433	-0.21234	0.16915	0.0028
XC ₄ H ₈ O +(1-X) CH ₂ ClCH ₂ Cl	-0.18860	-0.48260	0.09279	-0.04958	0.0018
XC ₄ H ₈ O +(1-X) CHClCCl ₂	-1.52172	-0.03423	-0.50145	0.04858	0.0024
XC ₄ H ₈ O +(1-X) CHCl ₂ CHCl ₂	-2.49710	-0.33292	0.24320	0.04505	0.0025

Table 4: Values of the coefficients B_i of equation - 2 and the stander deviation δn_D for $C_4H_8O + CH_2Cl_2$, or CHCl₃ or CH₂ClCH₂Cl or CHClCCl₂ or CHCl₂CHCl₂ at T=298.15K

Systems	B ₁	B ₂	B ₃	δ n _D
$XC_{4}H_{8}O + (1-X) CH_{2}Cl_{2}$	1.421126	-0.016191	-0.000067	0.00011
$XC_4H_8O + (1-X) CHCl_3$	1.442947	-0.033139	-0.005171	0.00023
$XC_4H_8O + (1-X)CH_2ClCH_2Cl$	1.441722	-0.019958	-0.016198	0.00027
$XC_4H_8O + (1-X) CHClCCl_2$	1.474834	-0.045979	-0.024085	0.00019
$XC_4H_8O + (1-X) CHCl_2CHCl_2$	1.491263	-0.046070	-0.039937	0.00019

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

- Fig. 1. Plot of Excess Molar Volume, Vm^E, against the mole fraction of C4H₈O, X, for the following systems at T= 303.15K.
 - X1 C4H80 + (1-X1) CH2Cl2
 - X1 C4H80 + (1-X1) CHCl3
 - X1 C4H80 + (1-X1) C2H4Cl2
 - $X_1 C_4 H_8 O + (1-X_1) C_2 H C l_3$
 - **A** X₁ C₄H₈O + (1-X₁) C₂H₂Cl₄

fraction of C₄H₈O, X, for the following systems at T= 288.15K. $X_1 C_4 H_8 O + (1-X_1) CH_2 Cl_2$

- X₁ C₄H₈O + (1-X₁) CHCl₃
- X₁ C₄H₈O + (1-X₁) C₂H₄Cl₂
- X₁ C₄H₈O + (1-X₁) C₂HCl₃
- ▲ X₁ C₄H₈O + (1-X₁) C₂H₂Cl₄

References

- [1] Nath J. & Rashmi, Fluid Phase Equilibria 58 (1989) 319.
- [2] Nath J. & Rashmi, J. Chem. Soc. Faraday Trans. 86 (1990) 3399.
- [3] Nath J. Chem. Soc. Faraday Trans. 87 (1991) 1345.
- [4] Nath J. & Panday J. G, J. Chem. Eng. Data 41 (1996) 844.
- [5] Nath J.Chem. Thermodynamics 28(1996) 1083.
- [6] Nath J. & Panday J. G, J. Chem. Eng. Data 42(1997) 514.
- [7] Nath J. Mishra S. K., Fluid Phase Equilibria 152 (1998) 277.
- [8] Riddick J. A.& Bunger W.B., Techniques of Chemistry, Vol.II, Organic Solvents: Physical Properties and Methods of Purification, 3rd edn, A. Weissberger: editor. Wiley- Inter Science, New York, 1970.
- [9] Timmermans, J. Physico-Chemical Constant of Pure Organic Compounds, Elsevier, Amsterdam, 1950.
- [10] Redlich O. & Kister A.T., J. Am. Chem. Soc. 71 (1949) 505.
- [11] Mc.Glashan M. L. & Rastogi R.P, Trans Faraday Soc .54(1958) 496.
- [12] Mc.Glashan M. L., Chemical Thermodynamics Academic Press, London, 1979.
- [13] 13.Srivastava R., Jain A. K., Nath J. & Rashmi, Fluid Phase Equilibria, 58(1989) 319.