Invariant Submanifold of $\tilde{\psi}(p,1)$ Structure Manifold

Lakhan Singh¹, Shailendra Kumar Gautam²

¹Department of Mathematics, D.J. College, Baraut, Baghpat (U.P.), India

²Eshan College of Engineering, Mathura (UP), India

Abstract: In this paper, we have studied various properties of a $\tilde{\psi}(p,1)$ structure manifold and its invariant submanifold, where p is odd prime. Under two different assumptions, the nature of induced structure ψ , has also been discussed.

Keywords: Invariant submanifold, Nijenhuis tensor, projection operators and complementary distributions

1. Introduction

Let V^m be a C^{∞} m-dimensional Riemannian manifold imbedded in a C^{∞} n-dimensional Riemannian manifold M^n , where m < n. The imbedding being denoted by $f: V^m \longrightarrow M^n$

Let B be the mapping induced by f i.e. B = df $df: T(V) \longrightarrow T(M)$

Let T(V,M) be the set of all vectors tangent to the submanifold f(V). It is well known that

 $B: T(V) \longrightarrow T(V,M)$

Is an isomorphism. The set of all vectors normal to f(V)forms a vector bundle over f(V), which we shall denote by N(V,M). We call N(V,M) the normal bundle of V^m . The vector bundle induced by f from N(V,M) is denoted by N(V). We denote by $C:N(V) \longrightarrow N(V,M)$ the natural isomorphism and by $\eta_s^r(V)$ the space of all C^∞ tensor fields of type (r, s) associated with N (V). Thus $\zeta_0^0(V) = \eta_0^0(V)$ is the space of all C^∞ functions defined on V^m while an element of $\eta_0^1(V)$ is a C^∞ vector field normal to V^m and an element of $\zeta_0^1(V)$ is a C^∞ vector field tangential to V^m .

Let \overline{X} and \overline{Y} be vector fields defined along f(V) and $\widetilde{X}, \widetilde{Y}$ be the local extensions of \overline{X} and \overline{Y} respectively.

Then $\left\lceil \tilde{X}, \tilde{Y} \right\rceil$ is a vector field tangential to M^n and its restriction $\left\lceil \tilde{X}, \tilde{Y} \right\rceil / f(V)$ to f(V) is determined independently of the choice of these local extension $\, ilde{X} \,$ and \widetilde{Y} . Thus $\left\lceil \overline{X}, \overline{Y}
ight
ceil$ is defined as $\left[\overline{X},\overline{Y}\right] = \left[\overline{X},\overline{Y}\right] / f(V)$ (1.1)Since B is an isomorphism [BX, BY] = B[X, Y] for all (1.2) $X, Y \in \zeta_0^1(V)$ Let \overline{G} be the Riemannain metric tensor of M^n , we define g and g^* on V^m and N(V) respectively as $g(X_1, X_2) = \tilde{G}(BX_1, BX_2) f$, and (1.3) $g^{*}(N_{1}, N_{2}) = \tilde{G}(CN_{1}, CN_{2})$ (1.4)For all $X_1, X_2 \in \zeta_0^1 ig(Vig)$ and $N_1, N_2 \in \eta_0^1 ig(Vig)$ It can be verified that g and g^* are the induced metrics on V^m and N(V) respectively. Let ∇ be the Riemannian connection determined by G in

 M^n , then $\tilde{\nabla}$ induces a connection ∇ in f(V) defined by

(1.5)
$$\nabla_{\bar{X}}\bar{Y} = \tilde{\nabla}_{\tilde{X}}\bar{Y}/f(V)$$

where \overline{X} and \overline{Y} are arbitrary C^{∞} vector fields defined along f(V) and tangential to f(V).

Let us suppose that M^n is a $C^{\infty} \tilde{\psi}(p,1)$ structure manifold with structure tensor $\tilde{\psi}$ of type (1,1) satisfying

(1.6)
$$\tilde{\psi}^p + \tilde{\psi} = 0$$

Let \tilde{L} and \tilde{M} be the complementary distributions corresponding to the projection operators

(1.7)
$$\tilde{l} = -\tilde{\psi}^{p-1}, \qquad \tilde{m} = I + \tilde{\psi}^{p-1}$$

where I denotes the identity operator.

Volume 4 Issue 12, December 2015 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

From (1.6) and (1.7), we have

(1.8) (a)
$$l + \tilde{m} = I$$
 (b) $l^2 = l$
(c) $\tilde{m}^2 = \tilde{m}$
(d) $\tilde{l} \ \tilde{m} = \tilde{m} \ \tilde{l} = 0$

Let D_l and D_m be the subspaces inherited by complementary projection operators l and m respectively.

We define

 $D_{l} = \left\{ X \in T_{p}(V) : lX = X, mX = 0 \right\}$ $D_{m} = \left\{ X \in T_{p}(V) : mX = X, lX = 0 \right\}$ $Thus T_{p}(V) = D_{l} + D_{m}$ $Also Ker l = \left\{ X : lX = 0 \right\} = D_{m}$ $Ker m = \left\{ X : mX = 0 \right\} = D_{l}$ at each point p of f(V).

2. Invariant Submanifold of $\tilde{\psi}(p,1)$ Structure Manifold

We call V^m to be invariant submanifold of M^n if the tangent space $T^p(f(V))$ of f(V) is invariant by the linear mapping $\tilde{\psi}$ at each point p of f(V). Thus (2.1) $\tilde{\psi}BX = B\psi X$, for all $X \in \zeta_0^1(V)$, and ψ being a (1,1) tensor field in V^m .

Theorem (2.1): Let N and N be the Nijenhuis tensors determined by $\tilde{\psi}$ and ψ in M^n and V^m respectively, then

(2.2) $\tilde{N}(BX, BY) = BN(X, Y)$, for all $X, Y \in \zeta_0^1(V)$

Proof: We have, by using (1.2) and (2.1)

(2.3)

$$\tilde{N}(BX, BY) = [\tilde{\psi}BX, \tilde{\psi}BY]$$

$$+ \tilde{\psi}^{2}[BX, BY] - \tilde{\psi}[\tilde{\psi}BX, BY]$$

$$- \tilde{\psi}[BX, \tilde{\psi}BY]$$

$$= [B\psi X, B\psi Y] + \tilde{\psi}^{2}B[X, Y]$$

$$- \tilde{\psi}[B\psi X, BY] - \tilde{\psi}[BX, B\psi Y]$$

$$- B[\psi X, \psi Y] + B\psi^{2}[X, Y] - \tilde{\psi}B[\psi X, Y]$$

$$= B[\psi X, \psi Y] + B\psi^{2}[X, Y] - \tilde{\psi}B[\psi X, Y] - \tilde{\psi}B[X, \psi Y]$$

$$= B\{[\psi X, \psi Y] + \psi^{2}[X, Y] - \psi[\psi X, Y] \\ -\psi[X, \psi Y]\} \\= B N(X, Y)$$

3. Distribution \tilde{M} Never Being Tangential to f(V)

Theorem (3.1) if the distribution \tilde{M} is never tangential to f(V), then (3.1) $\tilde{m}(BX) = 0$ for all $X \in \zeta_0^1(V)$ and the induced structure ψ on V^m satisfies (3.2) $\psi^{p-1} = -I$ **Proof**: if possible $\tilde{m}(BX) \neq 0$. From (2.1) We get (3.3) $\tilde{\psi}^{p-1}BX = B\psi^{p-1}X$; from (1.7) and (3.3) $\tilde{m}(BX) = (I + \tilde{\psi}^{p-1})BX$ $= BX + B\psi^{p-1}X$ (3.4) $\tilde{m}(BX) = B(X + \psi^{p-1}X)$ This relation shows that $\tilde{m}(BX)$ is tangential to f(V) which contradicts the hypothesis. Thus $\tilde{m}(BX) = 0$. Using this result in (3.4) and remembering

that *B* is an isomorphism, We get (3.5) $\psi^{p-1} = -I$, which gives that $\psi^{(p-1)/2}$ acts as an almost complex structure on V^m . Thus V^m is even

Theorem (3.2) Let \tilde{M} be never tangential to f(V), then

$$(3.6) \tilde{N}_{\tilde{m}}(BX, BY) = 0$$

dimensional.

Proof: We have (3.7) $\tilde{N}(BX, BY) = [\tilde{m} BX, \tilde{m}BY] + \tilde{m}^2[BX, BY]$ $-\tilde{m}[\tilde{m}BX, BY] - \tilde{m}[BX, \tilde{m}BY]$ Using (1.2), (1.8) (c) and (3.1), we get (3.6).

Theorem (3.3) Let \tilde{M} be never tangential to f(V), then

$$(3.8) \tilde{N}_{\tilde{l}}(BX, BY) = 0$$

Volume 4 Issue 12, December 2015 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Proof: We have (3.9)

$$\tilde{N}_{\tilde{l}}(BX, BY) = \left[\tilde{l} BX, \tilde{l} BY\right] + \tilde{l}^{2} \left[BX, BY\right]$$
$$-\tilde{l} \left[\tilde{l} BX, BY\right] - \tilde{l} \left[BX, \tilde{l} BY\right]$$

Using (1.2), (1.8) (a), (b) and (3.1) in (3.9); we get (3.8)

Theoren (3.4) Let \tilde{M} be never tangential to f(V). Define

$$(3.10) \tilde{H} \left(\tilde{X}, \tilde{Y} \right) = \tilde{N} \left(\tilde{X}, \tilde{Y} \right) - \tilde{N} \left(\tilde{m} \tilde{X}, \tilde{Y} \right) - \tilde{N} \left(\tilde{X}, \tilde{m} \tilde{Y} \right) + \tilde{N} \left(\tilde{m} \tilde{X}, \tilde{m} \tilde{Y} \right) For all $\tilde{X}, \tilde{Y} \in \zeta_0^1 \left(M \right)$, then
$$(3.11) \tilde{H} \left(\tilde{X}, \tilde{Y} \right) = BN \left(X, Y \right)$$$$

Proof: Using $\tilde{X} = BX$, $\tilde{Y} = BY$ and (2.2), (3.1) in (3.10) We get (3.11).

4. Distribution \tilde{M} Always Being Tangential to f(V)

Theorem (4.1) Let \tilde{M} be always tangential to f(V), then

(4.1) (a)
$$\tilde{m}(BX) = Bm X$$
 (b) $\tilde{l}(BX) = Bl X$

Proof : from (3.4), We get (4.1) (a). Also

$$(4.2) \ l = -\psi^{p-1}$$

 $lX = -\psi^{p-1} X$

$$(4.3) BlX = -B\psi^{p-1}X$$

Using (2.1) in (4.3)

(4.4) $BlX = -\tilde{\psi}^{p-1}BX = \tilde{l}(BX)$, which is (4.1) (b).

Theorem (4.2) Let \tilde{M} be always tangential to f(V), then *l* and *m* satisfy (4.5) (a) l + m = I (b) lm = ml = 0 (c) $l^2 = l(d) m^2 = m$.

Proof : Using (1.8) and (4.1) We get the results.

Theorem (4.3) If \tilde{M} is always tangential to f(V), then (4.6) $\psi^p + \psi = 0$

Proof: From (2.1) (4.7) $\tilde{\psi}^p BX = B \psi^p X$ Using (1.6) in (4.7) $-\tilde{\psi} BX = B \psi^p X - B \psi X = B \psi^p X$ Or $\psi^p + \psi = 0$ which is (4.6)

Theorem (4.4) : If
$$\tilde{M}$$
 Is always tangential to $f(V)$ then as in (3.10)

(4.8)
$$\tilde{H}(BX,BY) = BH(X,Y)$$

Proof: from (3.10) we get (4.9) $\tilde{H}(BX,BY) = \tilde{N}(BX,BY) - \tilde{N}(\tilde{m}BX,BY) - \tilde{N}(\tilde{m}BX,MY) + \tilde{N}(\tilde{m}BX,\tilde{m}BY) + \tilde{N}(\tilde{m}BX,\tilde{m}BY)$ Using (4.1) (a) and (2.2) in (4.9) we get (4.8).

References

- A Bejancu: On semi-invariant submanifolds of an almost contact metric manifold. An Stiint Univ., "A.I.I. Cuza" Lasi Sec. Ia Mat. (Supplement) 1981, 17-21.
- [2] B. Prasad : Semi-invariant submanifolds of a Lorentzian Para-sasakian manifold, Bull Malaysian Math. Soc. (Second Series) 21 (1988), 21-26.
- [3] F. Careres : Linear invairant of Riemannian product manifold, Math Proc. Cambridge Phil. Soc. 91 (1982), 99-106.
- [4] Endo Hiroshi: On invariant submanifolds of connect metric manifolds, Indian J. Pure Appl. Math 22 (6) (June-1991), 449-453.
- [5] H.B. Pandey & A. Kumar: Anti-invariant submanifold of almost para contact manifold. Prog. of Maths Volume 21(1): 1987.
- [6] K. Yano: On a structure defined by a tensor field f of the type (1,1) satisfying f³+f=0. Tensor N.S., 14 (1963), 99-109.
- [7] R. Nivas & S. Yadav : On CR-structures and $F_{\lambda}(2\nu+3,2)$ HSU structure satisfying $F^{2\nu+3} + \lambda^r F^2 = 0$, Acta Ciencia Indica, Vol. XXXVII M, No. 4, 645 (2012).

Volume 4 Issue 12, December 2015 www.ijsr.net

Paper ID: NOV152227

Licensed Under Creative Commons Attribution CC BY