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1. Introduction 
 
In our discussion of ring, we study a special class which we 
called a field. Field plays a central role in algebra. Due to the 
brilliant French mathematician Evariste Galois, which have 
served as guiding inspiration for algebra as it is today? In this 
paper will be devoted to a study of theory of field extension 
and also some discussion on Galois Theory. 
 

2. Some examples of Fields 
 
The main examples of fields that we consider are: 
(1) Number fields: A number field F is a subfield of . Any 
such field contains the field Q of rational numbers.  
(2) Finite fields: If K is a finite field, we 
consider   : ,  1   1K  Z . Since K is finite, 

 ker  is non zero, hence it is a prime ideal of Z , say 

generated by a prime number p . Hence / :p pFZ Z is 

isomorphic to a subfield of K. The finite field pF is called 
the prime field of K.  
(3) Function fields: Let x be an indeterminate and (x) be 
the field of rational functions, i.e. it consists of p(x)/q(x) 
where p(x), q(x) are polynomials and q(x) is non zero. Let 
 f ,  y [ ,  y]x x  be an irreducible polynomial.  

Suppose f (x, y) is not a polynomial in x alone and write 
 
          1

1f ,  y y y · · · ,n n

nx a x a x     

    ia x x . 

By Gauss’ lemma  f ,  y [ ,  y]x x  is an irreducible 

polynomial. Thus  (f ),  yx  is a maximal ideal of 

 [ , y] / f ,  yx x is a field. K is called the function field of 

the curve defined by ( ) 0,f x y  in 2 . 
 
Characteristic of a field: Let R be a commutative ring with 
identity e . 
 

3. Isomorphism 
 
Define the ring homomorphism f : RZ by  f n ne . 

Then Ker f = (n) for some integer n. If n = 0, then Z  is 
isomorphic to a subring of R. In this case we say that R has 
characteristic zero. If R is a domain then  / nZ  is a 
domain as it is isomorphic to a subring of R. Hence n is a 
prime number, say p. Therefore the finite field

p
F  is 

isomorphic to a subfield of R. In this case, we say that R has 
characteristic p. Thus any field F contains either an 
isomorphic copy of Q or

p
F . 

 
4. Field Extension and Irreducibility 
 

Definition 4.1. (i) Let K be a subfield of a field F. We say F 
is an extension field of K. We also say that K is a base field. 
We also write this as F/K. 
(ii) An element a ∈ F is called algebraic over K if there 
exists a nonzero polynomial     f x K x such that f (a) 
= 0. If every element of F is algebraic over K then we say 
that F is an algebraic extension of K.  
(iii) An element a ∈ F which is not algebraic over K is 
called a transcendental element over K.  
 
Example 4.2. It is known that the base e of the natural 

logarithm and π are transcendental over Q. Since (πi)
2

 = 

−π
2

, πi is a root of 2 2x  ∈  x . Hence πi is algebraic 

over  . However πi is not algebraic over Q. Thus the 
property of being algebraic depends upon the base field 
Example 4.3. Let K be a finite field whose characteristic is a 
prime number p. Then K has a subfield F with p elements. 
Since K is finite, it is a finite dimensional F -vector space. If 

  
F

dim K n then K has np elements. If a ∈ K then the set 
21,  ,  ,  . . . ,  { }na a a  is linearly dependent. 

Let 0 1,  ,  . . . ,  
n

b b b F , not all zero, so 

that 0 1 · · · 0n

n
b ba b a    . Hence ‘a’ is a root of the 

nonzero polynomial 0 1  · · ·  n

n
b b x b x   . Therefore b is 
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algebraic over F and hence K/F is an algebraic extension. 
Proposition 4.4. Let F/K be a field extension and F be 
algebraic over K. Then there exists a unique monic 
irreducible polynomial     f x K x  suchthat 

  0f   . 
 

Proof. Define : [ ]K x       F by g x g   . 
Since  is a ring homomorphism and α is algebraic, 

 ker I  is a nonzero ideal of  K x . Since  K x  is a 
PID and K[x]/I is isomorphic to a subfield of F, I is 
generated by an irreducible polynomial h(x) ∈ K[x]. If g(α) 
= 0 then      1x x xg h h for some polynomial  1 xh ∈ 

[ ].K x If g is irreducible, then  g h x for some 
\ {0 .} K K   If g and h are taken to be monic, then g = 

h. 
 
Definition 4.5. The irreducible monic polynomial in F [x] 
whose root is K  is denoted by  ,   irr F and it is 
called the irreducible monic polynomial of α over F. The 
degree of irr (α, F) is called the degree of α and it is written 
as

F
deg  . 

 
Example 4.6. (i)  i Satisfy   4  1 0f x x   .show 

that ( ) (x)  ,f irr i Q Consider the field  Q i = smallest 

field containing  Q  and i . Then   2  , .( )irr Q i x ii    

ii) Let p be a prime number and
2 / i p

p
e   . Then 1 0px   is 

satisfied by 
p

 . Since 1 2( )(1 1  · · ·p p px x x x      1)x   

and   1 2:  · · ·  1p p

p
x x x x        is irreducible over Q , 

 , .( )
p p

irr Q x   
 
Simple field extensions: Let K ⊂ F be a field extension. Let 
α, β ∈ F be transcendental. Define   : K[x] → F such that 

    .g x g  Then ker }.{0  Thus K[x]  K[α] and 
hence K (α)   K (β) by an isomorphism σ such that σ(α) = β 
and  |

K K
id  . The situation is quite diff erent for algebraic 

elements 
 
Proposition 4.7. Let F ⊂ K be a field extension and α ∈ K 
be algebraic over F and     ,  .f x irr F Let  n deg f . 
Then 
(i)         / .F F F x f x   (ii)   

F
dim F n  and 

11,  ,  . . }. ,  { n   is an F - basis of F (α). 
 

Proof. Consider the substitution homomorphism 
 : F [x] → F [α] such that   , |

F F
x id     

Then   ker f x  where    , . f x irr F Hence 

      / .F x f x F  since   f x is a maximal ideal, F [α] 

is a field, so F [α] = F (α). 
Let g(α) ∈ F [α] and        g x f x q x r x  where q, r ∈ 

F[x], and   ( )degr x degf x ) or r(x) = 0. Then g(α) = r(α).  

Thus F [α] is an F −vector space generated by 1 1, ,  . . . , n    
Where n = deg f (x). Suppose that

1

0
0

n
i

i
i

a




 . If 
i

a are not all 

zero then 
1

0

n
i

i
i

a x




  is a nonzero polynomial of degree less than 

deg f (x) satisfied by α. This contradicts minimality of degree 
f(x). Thus 2 11, , ,. . . ,{ }n    is an F - vector space basis of F 

[α]. Hence     , .
F

dim F deg irr F   
 
Proposition 4.8. Let K/F be a field extension and α ∈ K be 
algebraic over F. Then F (α)/F is an algebraic extension. 
Proof. If β ∈ F (α) and 0  then 21, , ,. . .{ } , n   is a 
linearly dependent subset of F (α) since  F

dim F n  . 
Hence there exist 0 1, ,  . . . ,

n
a a a ∈ F not all zero so 

that 0 1 · · · 0n

n
a a a     . Hence β is algebraic. Therefore 

  /F F is an algebraic extension. 

 
Proposition 4.9. Let α, β ∈ K ⊇ F be algebraic over F. 
Then there exists an F-isomorphism : F (α) → F (β) such 
that ψ(α) = β if and only if    , , .irr F irr F   

Proof. Let    ,f x irr F and    , .g x irr F Then ψ (f 
(α)) = f (β) = 0. Thus g(x)|f (x). Since g, f are monic and 
irreducible, g(x) = f (x). 
 
Conversely, suppose    , , .irr F irr F  Then F (α)   F 
[x]/(f (x))  F (β) and the isomorphism are F -isomorphism. 
Hence F (α) and F (β) are F-isomorphic 
Proposition 4.10. Let F ⊆ K, K

′
 be two field extensions of 

F.  : 

K → K
′
 be an F - isomorphism. Let α ∈ K be a root of 

   .f x F x  

Then (α) is a root of  .f x  

Example 4.11. (i) Let    3 2 .f x x Q x   By Eisenstein 

criterion  f x is irreducible over Q . 
The roots of  f x are 2, ,w w   where α is the real cube 
root of 2 and w is the complex cube root of 1. Thus the fields 
    2(,  ),Q Q w Q w areQ   −isomorphic. 

(ii) Since    2 2, 1,( ) )1(/irr i x x x i         
iii) The polynomial   2 1f x x x   is irreducible over 2F . 

Hence    2 / ( )K F x f x is a field which is a two 
dimensional 2F . −vector space. Hence K is a field with four 
elements. 
(iv) The polynomial    3 ( ), 1 1g x y y x x x    is 
irreducible in C(x)[y] by Eisenstein’s criterion. Hence 
C(x)[y]/(g(x, y)) is a simple field extension of the function 
field C(x) 
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5. Degree of Field Extension 
 

Definition 5.1. Let F ⊆ K be a field extension.  The 
dimension of the 
 
F -vector space K, denoted by [K: F] is called the degree of 
the field extension K/F. 
 
For an algebraic element α ∈ K, 

    , .
F

dim F deg irr F  If [K: F] < ∞, then F ⊆ K is 
called a finite extension. 
 
Proposition 5.2. A finite extension K/F is an algebraic 
extension. 
Proof. Let [K: F] = n and β ∈ K. Then 1, ,  . . . , n  are 
linearly dependent over F. Hence there exist 0 1, ,. . ., ,

n
a a a not 

all zero in F such that 0 1 · · ·  0n

n
a a a     . 

Let   0 1 · · · n

n
f x a a x a x    . Then β is a root of f (x). 

Hence β is algebraic over F. 
 
Corollary 5.3. Every irreducible polynomial over   has 
degree ≤ 2. 
Proof. Let f (x) ∈  [x] be irreducible and α ∈   a root of 
f (x).  Then  [α] ⊆   .  If α ∈   , deg f (x) = 1. If α  , 
then [   [α] :  ] ≥ 2.  Thus  =   [α]. Since [  :  ] = 2, 

  2.degf x   
Example 5.4. (1) Since 2 , 2( ]1 :) [,irr i x    as 

(i)    

(2)Since 1 2, · · ·  ( ) 1p p

p
irr Q x x x       , 

  : 1.
p

Q Q p      
(3) Algebraic extension of a field may not be finite. Consider 

the chain of fields 1/2 1/22 · · ·( ) (2 · ·)
n

Q Q Q    their 

union K contains the algebraic numbers 1/2 2
n

n  for all n 

and αn is a root of the irreducible 

polynomial   2  2
n

nf x x  . Hence 2] :[ nK Q   for 

all n . Thus  ] :[K Q  . 
(4) Quadratic Extensions: If [K: F] = 2 then K is called a 
quadratic extension of F. Let α ∈ K \F then {1, α} is a basis 
of K over F. Hence 2    a bn   for some a, b ∈ F. 
Therefore     2,f x irr F x ax b    . The roots 

of  f x are 2 4 / 2a a ab  if Char F  2 therefore 
2( 4 )F a b  

Definition 5.5. A chain of fields 1 2 · · ·
n

F F F   is called a 
tower of fields if 

i
F is a subfield of 1i

F


, for all 
1,2,  . . . , 1.i n   

 
Proposition 5.6. If K ⊆ F ⊆ L is a tower of fields then 
                       :    :   :  .L F F K L K  
Proof. If either F/K or L/F are infinite dimensional, then L/K 
is also infinite dimensional. Thus we may assume that F/K 

and L/F are finite. Suppose that 
    :     :   .F K m and L F n  Let 1 2, ,. . . ,

n
x x x be a basis 

of L over F and 1 2, ,. . . ,
m

y y y be a basis of F over K. 
We claim that the set 

1,2,... ,   1,2,.{ ,| . }.
j j

B x y i n and j m   is a vector space 
basis of L over K. Let z ∈ L. 
 Thus z = 1 1 · · · ,

n n
f x f x  for some 1 2f ,f ,...,fn F  we write 

1f n

ii ij j
K y  therefore 

1 1 1x f xn n m

l l jl l l lj j
z K y      . Thus B generate Las 

K-vector space. Suppose 1 1 x 0m n

j i ij i j
a y    . 

Then 1 1[ ]x 0n m

i j ij j i
a y    . Since x1 . . . , xn are F -linearly 

independent.  Therefore 1 x 0n

i ij i j
a y   for each i. By linear 

independence of 1,  . . . ,  n
y y to see that all the 0

ij
a  . 

 
Corollary 5.7. Let F ⊆ K be a finite field extension. Then 

    ,     :   ,deg irr F divides K F for all α ∈ K. 
Proof. Since F ⊆ F (α) ⊆ K, we have 
               :    :   :   K F K F F F         

Thus     ,     :   ,deg irr F divides K F . 
 
Proposition 5.8. Let K/F be a field extension. If 

1 2, ,  . . . ,
n

a a a ∈ K are algebraic over F then F ( 1 2, ,. . .,
n

a a a ) 
is a finite algebraic extension of F. 
 

Proof. Since ai is algebraic over F, it is algebraic over F 
( 1 2 1, ,. . . ,

i
a a a


). Thus 1 2 1 2 1, ,. . . ,  :  , ,. .[  ( ) ( . , )]

i i
F a a a F a a a


 

is finite for all i. Therefore the field 1 2, ,. . .( ),
n

F a a a is a 
finite extension of F. Hence it is algebraic. 
 
Corollary 5.9. Let E/F and K/E be algebraic extensions. Then 
K/F is an algebraic extension. 
Proof. Let a ∈ K and let a be a root 
of   1

0 1 1· · · [ ]n n

n
f x a a x a x x E x


      .Consider the field 

0 1 1,  ,  . . . ,  ( ).
n

L F a a a


 Then a is algebraic over L. Hence 

 L a  is a finite extension of L. Since 0 1 1, ,  . . . ,
n

a a a


are 

algebraic over F, L is a finite extension of F. Hence  L a is a 
finite extension of F. Hence a is algebraic over F. 
 
Corollary 5.10. Let K/F be a field extension. Then the set of 
elements of K which are algebraic over F is a subfield of K. 
 
Proof. Let a, b ∈ K be algebraic over F. Then F (a, b) is a 
finite extension of F. Hence all elements of F (a, b) are 
algebraic over F. In particular, a ± b, ab and a/b if 0b  , are 
all algebraic over F. 
 
Compositum of fields: Let L/k be a field extensions and E/k 
and F/k be intermediate field extensions. Then the smallest 
field containing E and F, to be denoted by EF, is called the 
compositum of F and F. Suppose 1 2, ,  . . . ) ( ,

n
E k a a a and F 

is an extension of k. Then 1 2, ,  . . . .( ),
n

EF F a a a  
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Example 5.11. Let m and n be co prime positive integers. 
Consider the subfields   ( )  ( )

m n
E Q and F Q of    . 

Then the compositum of E and F is ( ).
mn

Q   
Indeed, as m and n are coprime, there exist ,p q  such 
that 1mp nq  . Therefore 
 

     2 / 2 /  )2  ( )/ ( p q

mn n m
exp i mn exp p i n exp q i m       

 
We can estimate the degree of the compositum of two finite 
field extensions in terms of their degrees. 
 
Proposition 5.12. Let L/k be a field extension and E/k, F/k be 
intermediate finite extensions fields. Then 
                       
                               [EF : k] ≤ [E : k][F : k]. 
If [E : k] and [F : k] are coprime then equality holds. 
 
Proof. Let 1 2 , ,  . . . ,

m
x x x and 1 2, ,  . . . ,

n
y y y be bases of the 

k  vector spaces E and F respectively. Then it is easy to see 
that 1 2, ,  . . . ) ( ,

m
E k x x x and 1 2, ,. . ).(

n
F k y y y . Therefore 

1 2 1 2, ,  . . . ,  ;  ,  ,  . . ) ( . .
m n

EF k x x x y y y  
 
We have the following diagram of field extensions: 

 
Since 1 2,  ,  . . . ),(  

n
EF E y y y we have   :   EF F n . Since 

the degree is multiplicative in a tower of finite extensions, we 
have 
                 [EF : k] = [EF : E][E : k] ≤ mn 
 
Since m and n both divide [EF : k], and (m, n) = 1, we get 

  :|  .mn EF k  
 
Hence [EF : k] = mn.  
 
6. Conclusion 
 
An element a ∈ F is called algebraic over K if there exists a 
nonzero polynomial    f x K x  such that   0f a  . If 
every element of F is algebraic over K then we say that F is 
an algebraic extension of K 
If a ∈ K then the set 21,  ,  ,  . . . ,  { }na a a  is linearly 

dependent. Let 0 1,  ,  . . . ,  
n

b b b F , not all zero, so 

that 0 1 · · · 0n

n
b ba b a    . Hence a is a root of the 

nonzero polynomial 0 1  · · ·  n

n
b b x b x   . Therefore b is 

algebraic over F and hence K/F is an algebraic extension. 
Let F ⊆ K be a field extension.  The dimension of the 
 
F -vector space K, denoted by [K : F ] is called the degree of 
the field extension K/F.  For an algebraic element α ∈ K, 

    ,  .
F

dim F deg irr F  If [K : F ] < ∞, then F ⊆ K is 
called a finite extension. 
 
Let / KL be a field extensions and / KE and / KF be 
intermediate field extensions. Then the smallest field 
containing E and F, to be denoted by EF, is called the 
compositum of F and F. Suppose 1 2,  ,  . . . ,( ) 

n
E k a a a and 

F is an extension of k. Then 1 2, ,  . . . .( ),
n

EF F a a a  
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