
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

A Survey on Bug Triaging- Software Data
Reduction Techniques

Vijay Kukre
1
, Shyam Gupta

2

1PG Student, Siddhant College of Engineering, Sudumbre, Savitribai Phule Pune University

2Professor, Computer Department, Siddhant College of Engineering, Sudumbre, Savitribai Phule Pune University

Abstract: Most of the package corporations have to modify sizable amount of package bugs a day. Package bugs square

measure inescapable and fixing package bugs is a rich task. The goal of effective bug triaging package is to assign

doubtless intimate developers to new-coming bug reports to cut back time and price of bug triaging, An automatic approach

is planned during this paper that predicts a developer with relevant expertise to resolve or fix the new returning bug report during

this paper, the five term choice strategies on the accuracy of bug assignment square measure used. Additionally, the load between

developer supported their expertise is re-balanced. The planned system is made with intention to counsel or advocate the bug and to

not mechanically assign it. this enables a window to handle real time crisis that come back up throughout project development

lifecycle.

Keywords: Mining software repositories, application of data pre-processing, data management in bug repositories, bug data reduction,
feature selection, instance selection, bug triage.

1. Introduction

Many software package corporations pay most of the money
in fixing the bugs. Massive software package comes have
bug repository that collects all the knowledge associated
with bugs. In bug depository, every software package bug
incorporates a bug report. The bug report consists of matter
info concerning the bug and updates associated with standing
of bug fixing. Once a bug report is made, a personality’s
triager assigns this bug to a developer; World Health
Organization can try and fix this bug. This developer is
recorded in associate item assigned-to. The assigned to
will amendment to a different developer if the antecedently
assigned developer cannot fix this bug. the method of
assigning an accurate developer for fixing the bug is termed
bug triage. Bug sorting is one among the foremost time
intense step in handling of bugs in software package comes.
Manual bug sorting by a personality's triager is time intense
and erring since the quantity of daily bugs is massive and
lack of information in developers regarding all bugs. Because
of all these things, bug sorting ends up in costly time loss,
high price and low accuracy. The information keep in bug
reports has 2 main challenges. First of all the massive scale
information and second low quality of knowledge as a result
of sizable amount of daily reported bugs, the number of bug
reports is scaling up within the repository. Noisy and
redundant bug’s square measures degrading the standard of
bug reports. In this paper an efficient bug sorting system
is projected which scale will back the bug information to
save lots of the labor price of developers. It conjointly aims
to create a top quality set of bug data by removing the
redundant and non-informative bug reports.

2. Literature Survey

In [1] they mention that Bug triaging is a fallible, tedious and
time intense task. They’re going with Revisiting Bug sorting

and determination Practices. In this paper they studied
regarding bug triaging and fixing practices, including bug
reassignments and re-openings, within the context of the
Mozilla Core and Firefox comes, which they consider to be
representative samples of a large-scale open source computer
code project. Additionally they need conceive to conduct
qualitative and qualitative analysis of the bug assignment
practices. They have a tendency to have an interest in
providing insights into several areas: sorting practices,
review and approval processes; root cause analysis of bug
reassignments and reopens in open supply computer
code projects; and recommendations for improvements/
redesign of bug tracking systems.

In [2] this paper, they introduce a graph model supported
Markov chains that captures bug moving history. This model
has many fascinating qualities. First, it reveals developer
networks which might be wont to discover team structures
and to search out appropriate consultants for a replacement
task. Second, it helps to higher assign developers to bug
reports. In our experiments with 445,000 bug reports, our
model reduced moving events, by up to seventy two
additionally, the model exaggerated the prediction accuracy
by up to twenty three percentage points compared
to ancient bug triaging approaches.

In [3] recent analysis shows that optimizing recommendation
accuracy drawback and proposes an answer that is basically
an instance of content-based recommendation (CBR).
However, CBR is well known to cause over-specialization,
recommending solely the categories of bugs that
every developer has solved before. This drawback is critical
in apply, as some veteran developers may be over laden,
and this is able to slow the bug fixing method. In this paper,
they take 2 directions to handle this problem: initial, we have
a tendency to develop the matter as an optimization
drawback of each accuracy and price. Second, we adopt a
content-boosted cooperative filtering (CBCF), combining an

Paper ID: NOV152110 904

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

existing CBR with a cooperative filtering recommender
(CF), which boosts the advice quality of either
approach alone.

In [4] Current techniques either use data retrieval and
machine learning to search out the foremost similar bugs
already fixed and suggest knowledgeable developers, or they
analyze change data stemming from ASCII text file to
propose expert bug solvers. Neither technique combines
matter similarity with modification set analysis nor thereby
do exploits the potential of the complex between bug
reports and alter Levant options (i.e., words in bug data)
within the planned system, the mixture of instance choice and
have selection is employed. The planned systems are
enforced in java language thus it'll be platform freelance.
As there's no restriction on the dimensions of bug’s info, a
tester will add large number of bugs within the system. this
can be one in all the biggest benefits of the planned system.
Since all the bug’s info is receptive all the developers, it
takes less time for the developer to require the choice.
Developer will quickly opt for the bug to repair. Since
bug sorting aims to predict the developers who will fix the
bugs, we have a tendency to follow the present work to get
rid of unfixed bug reports, e.g., the new bug reports or will-
not-fix bug reports. Thus, we have a tendency to solely opt
for bug reports, that area unit mounted and duplicate (based
on the things standing of bug reports). Moreover, in bug
repositories, many developers have solely fixed only a
few bugs. Such inactive developers might not
provide enough info for predicting correct developers. In our
work, we have a tendency to take away the developers, who
have mounted but ten bugs.

In [5], they suggest a semi-supervised text classification
approach for bug triage to avoid the insufficiency of labeled
bug reports in existing supervised approaches which
combines naive Bayes classifier and expectation
maximization to take benefit of both labeled and unlabeled
bug reports. This approach trains a classifier with a part of
labeled bug reports and then the approach iteratively labels
many unlabeled bug reports and trains a new classifier with
labels of all the bug reports. They also used a weighted
advice list to improve the performance by daunting the
weights of multiple developers in training the classifier.
Experimental outcome on bug reports of Eclipse demonstrate
that new approach is good than the existing supervised
approaches in terms of classification accuracy of bug triage
by up to 6% but does not provide automatic bug triage with a
bug repository.

In [6], they examine the make use of five term selection
methods on the correctness of bug task to minimize time and
cost of bug triaging and also re-balance the load between
developers based on their knowledge so, they carry out
experiments on four real datasets. The first term selection
method, Log Odds Ratio (LOR) measures the odds of the
word occurring in the positive class normalized by the
negative class. The second term selection method, Chi-
Square (X2) test is used to observe independence of two
events. The third term selection method, Term Frequency
Relevance Frequency (TFRF) is used to select more high
frequency for instances in the positive category than in the

negative category. The fourth term selection method, Mutual
Information (MI) is used to measures the shared dependence
of two random variables. The fifth term selection method,
Distinguishing Feature Selector (DFS) gives total prejudiced
powers of the features over the entire text set rather than
being class specific. The investigational outcome
demonstrates that by selecting a small number of
discriminating terms, the F-score can be significantly
enhanced.

In [7], they propose the combination of both feature selection
and instance selection techniques to improve the accuracy of
bug triage to evaluate the training set reduction on the bug
data of Eclipse. As a result, 70% words and 50% bug reports
are removed after the training set reduction. The
experimental results show that the new and small training sets
can provide better accuracy than the original one. The
drawbacks of their approach are low precision rate and
cannot be directly transferred to other projects as the results
are based on parts of the bug data from the Eclipse only.

In [8], they applied conventional bug triage techniques to
projects of different sizes and found that the usefulness of a
bug triage technique mainly depends on the size of a project
team i.e. the number of developers, hence become less useful
when the number of developers increases. They proposed a
method called BugFixer shown in Figure 1, makes a new bug
report based on historical bug-fix information and constructs
a Developer-Component-Bug (DCB) network, which shows
the association between developers and source code
components and also the association between the components
and their related bugs. A DCB network finds the information
such as “who fixed what, where”. For a new bug report,
BugFixer uses a DCB network to suggest to triager a list of
appropriate developers who might fix this bug. The
experimental outcome of their methods outperforms the
existing methods for large projects and achieves as good as
performance for small projects.

Figure 1: Structure of BugFixer

3. Proposed System

The diagram in figure 2 illustrated the system architecture of
the proposed system. The input to the system is in the form of
bug data set. The bug data set consists all the details of
software bugs. Each bug has bug report and the details of the
developer who have worked on that respective bug. The bug

Paper ID: NOV152110 905

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

report is mainly divided in two parts, summary and
description. The proposed system gives predicted results in
form of output. Basically, there are two types of users in the
proposed system. First is the developer and second is the
tester. Developer will get software bugs assigned to him.
Developer can work on only one software bug at a time.
Tester can add new bugs to the system. As shown in figure 2,
the proposed system makes use of bug data reduction. In the
proposed system, to save the labor cost of developers, the
data reduction for bug triage is made. Bug data reduction is
applied in phase of data preparation of bug triage.

Figure 2: System Architecture

Data reduction mainly has two goals. Firstly, reducing the
data scale and secondly, improving the accuracy of bug
triage. Techniques of instance selection and feature selection
are used for data reduction. Instance selection and feature
selection are widely used techniques in data processing. For a
given data set in a certain application, instance selection is to
obtain a subset of relevant instances (i.e., bug reports in bug
data) while feature selection aims to obtain a subset of
relevant features (i.e., words in bug data). In the proposed
system, the combination of instance selection and feature
selection is used.

4. Conclusion

Bug triage is a chip step of computer code maintaining.
The projected system aims to form reduced and high-quality
bug knowledge in computer code development and
maintenance. Processing techniques like instance choice and
have choice are used for data reduction. The
projected system is used for any open supply comes that
generate immense bug knowledge. Various software
corporations engaged on comes like banking, food chain
management will use the applying of the projected system.
The advantage of proposed system is, it combines feature
selection with instance selection to decrease the level of bug
data sets as well as improve the data quality. The next
advantage is, it provide priority according to severity of bug
and security so that no another developer can access it.

References

[1] Baysal, O., Holmes, R., & Godfrey, M. W. (2012, June),
“Revisiting bug triage and resolution practice” In User

Evaluation for Software Engineering Researchers

(USER), 2012 (pp. 29-30) IEEE.
[2] Jeong, G., Kim, S., & Zimmermann, T. (2009, August),

“Improving bug triage with bug tossing graphs” in
Proceedings of the the 7th joint meeting of the European

software engineering conference and the ACM

SIGSOFT symposium on The foundations of software

engineering (pp. 111-120). ACM.
[3] Park, Jin-woo, Mu-Woong Lee, Jinhan Kim, Seung-won

Hwang, and Sunghun Kim, "CosTriage: A Cost-Aware
Triage Algorithm for Bug Reporting Systems." In AAAI.
2011..

[4] Kevic, Katja, Sven Christian Muller, Thomas Fritz, and
Harald C. Gall. "Collaborative bug triaging using textual
similarities and change set analysis", In Cooperative and

Human Aspects of Software Engineering (CHASE), 2013

6th International Workshop on, pp. 17-24. IEEE, 2013..
[5] Xuan, Jifeng, He Jiang, Zhilei Ren, Jun Yan, and

Zhongxuan Luo "Automatic Bug Triage using Semi-
Supervised Text Classification" in SEKE, pp. 209-214,
2010..

[6] Alenezi, Mamdouh, Kenneth Magel, and Shadi
Banitaan. "Efficient bug triaging using text mining."
Journal of Software 8.9 (2013): 2185-2190.

[7] Zou, Weiqin, Yan Hu, Jifeng Xuan, and He Jiang.
"Towards training set reduction for bug triage." In
Computer Software and Applications Conference

(COMPSAC), 2011 IEEE 35th Annual, pp. 576-581.
IEEE, 2011.

[8] S Hu, Hao, Hongyu Zhang, Jifeng Xuan, and Weigang
Sun. "Effective bug triage based on historical bug-fix
information." In Software Reliability Engineering

(ISSRE), 2014 IEEE 25th International Symposium on,
pp. 122-132 IEEE, 2014.

Paper ID: NOV152110 906

