International Journal of Science and Research (IJSR)

ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Coincidence and Common Fixed Point Theorems in D-Metric Spaces

Raghu Nandan Patel¹, Manoj Kumar Tiwari²

¹Government Naveen College, Balrampur, Chhattisgarh, India

Abstract: In this paper we used the concept of compatible mappings of type (P) in D-metric space. Our result generalize the result of Parsai V. and Singh B., Fisher and Pathak.

2000 Mathematics Subject Classification: 54H25, 47H10.

Key Words and phrases: Common fixed point, D – Metric space, compatible maps, compatible maps of type(P).

1. Introduction

In 1992, a new structure of a generalized metric space was introduced by Dhage on the line of ordinary metric space defined as under:

Let R denoted the real line and X denoted a nonempty set. Let D: $XxXxX \rightarrow R$ be a function satisfying properties:

- (D_1) $D(x, y, z) \ge 0$ for all $x, y, z \in X$, equality holds if and only if x = y = z.
- $(D_2)\ D(x,\,y\,,\!z)=D(x,\,z,\,y)=\ldots\ldots \forall\ x,\,y,\,z\in X,$
- $\begin{array}{l} (D_3)\ D(x,\,y,\,z) \leq D(x,\,y,\,u) + D(x,\,u\,\,,z) + D(u,\,y\,\,,z) \ \forall \ x,\,y,\,z, \\ u \,\in\, X \ , \end{array}$

The function D is called a D-metric for the space X and (X, D) denotes a D-metric space. Generally the usual ordinary metric is called the distance function. D-metric is called diameter function of the points of X (Daghe)

In the last three decades, a number of authors have studied the aspects of fixed point theory in the setting of D-metric spaces. They have been motivated by various concepts already known for metric space and have thus introduced analogous of various concepts in the framework of the D-metric spaces. Khan, Murthy-Chang-Cho-Sharma and Naidu-Prasad introduced the concepts of weakly commuting pairs of self mappings, compatible pairs of self mapping of type (A) in a D-metric space and notion of weak continuity of a D-metric, respectively, and they have proved several common fixed point theorems by using the weakly commuting pairs of self-mappings, compatible pairs of self-mappings of type (A) in a D-metric space and the weak continuity of a D-metric.

In this paper , we use the concept of compatible mappings of type (P) and compare these mappings with compatible mappings and compatible mappings of type (A) in D-metric spaces. In the sequel, we drive some relations between these mappings. Also, we prove a coincidence point a common fixed point theorem for compatible mappings of type (P) in D-metric spaces.

DEFINITIONS [1]: A sequence $\{x_n\}$ in a D-metric space (X, D) is said to be convergent to a point $x \in X$, denoted by $\lim_{n\to\infty} x_n = x$, if $\lim_{n\to\infty} D(x_n, x, z) = 0$ for all $z \in X$. The point x is said to be limit of sequence $\{x_n\}$ in X.

DEFINITION [2]: A sequence $\{x_n\}$ in a D-metric space (X,D) is called a Cauchy sequence if $D(x_m,x_n,z) \to 0$ as n, m $\to \infty$ for all $z \in X$.

DEFINITION [3]: A D-metric space in which every Cauchy sequence is convergent is called complete.

REMARK [1]: In a D-metric space (X, D) a convergent sequence need not be a Cauchy sequence, but every convergent sequence is a Cauchy sequence when the D-metric D is continuous on X.

DEFINITION [4]: Let S and T be mappings from a D-metric space (X,D) into itself. The mappings S and T are said to be compatible if $\lim_{n\to\infty} D(STx_n, TSx_n, z) = 0$ for all $z \in X$, whenever $\{x_n\}$ is a sequence in X such that $\lim_{n\to\infty} Sx_n = \lim_{n\to\infty} Tx_n = t$ for some $t \in X$.

DEFINITION [5]: Let S and T be mappings from a D-metric space (X,D) into itself. The mappings S and T are said to be compatible of type (A) if $\lim_{n\to\infty} D(STx_n, TTx_n, z) = 0$ and $\lim_{n\to\infty} D(STx_n, SSx_n, z) = 0$ for all $z \in X$, whenever $\{x_n\}$ is a sequence in X such that $\lim_{n\to\infty} Sx_n = \lim_{n\to\infty} Tx_n = t$ for some $t \in X$.

DEFINITION [6]: Let S and T be mappings from a D-metric space (X,D) into itself. The mappings S and T are said to be compatible of type (P) if $\lim_{n\to\infty} D(SSx_n, TTx_n, z) = 0$ for all $z \in X$, whenever $\{x_n\}$ is a sequence in X such that $\lim_{n\to\infty} Sx_n = \lim_{n\to\infty} Tx_n = t$ for some $t \in X$.

The following propositions show that Definition [3.5] & [3.6] are equivalent under some conditions:

PROPOSITION [1]: Let S and T be compatible mappings of type(P) from a D-metric space (X, D) into itself. If St = Tt for some t in X, Then STt = SSt = TTt = TSt.

Volume 4 Issue 12, December 2015

²Government Girls Polytechnic College, Bilaspur, Chhattisgarh, India

International Journal of Science and Research (IJSR)

ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

PROOF: Suppose that $\{x_n\}$ is a sequence in X defined by $x_n=t$, n=1,2,3,... and St=Tt. Then we have $lin_{n\to\infty}\ Sxn=lim_{n\to\infty}\ Txn=St.$ Since S and T are compatible mappings of type (P), we have

D(SSt, TTt, z) = $\lim_{n\to\infty} D(SSx_n, TTx_n, z) = 0$.

Hence we have SSt = TTt. Therefore, STt = SSt = TTt = TSt.

Let R^+ denote the set of all non-negative real numbers and F be the family of mappings $\phi: (R^+)^5 \to R^+$ such that each ϕ is upper-semi-continuous, non-decreasing in each coordinate variable, and for any t > 0, $\gamma(t) = \phi(t,t,a_1t,a_2t,t) < t$, where $\gamma: R^+ \to R^+$ is a mapping with $\gamma(0) = 0$ and $a_1 + a_2 = 3$.

We have prove the following theorems:

THEOREM [1.1]: Let A, B, S and T be mappings from a complete D-metric space (X, D) into itself, satisfying the following conditions:

[1.1] $A(X) \subset T(X)$ and $B(X) \subset S(X)$,

[1.2] $S(X) \cap T(X)$ is a complete subspace of X.

[1.3] $[1+p{D(Ax,Sx,z) + D(By,Ty,z)}]$ D(Ax,By,z)

 $\leq p[D^2(Ax,Sx,z) + D^2(By,Ty,z)] + \phi(D(Sx,Ty,z), D(Ax,Sx,z), D(By,Ty,z),$

D(Ax,Ty,z), D(By,Sx,z))

for all $x,y,z \in X$, where $\phi \in F$. Then the pairs A, S and B, T have a coincidence point in X.

For our theorems, we need the following LEMMAS:

LEMMA [1]: For every t > 0, $\gamma(t) < t$ if and only if $\lim_{n \to \infty} \gamma^n(t) = 0$, where γ^n denotes the n-times composition of γ .

LEMMA [2]: Let A, B, S and T be mappings from a complete D-metric space (X, D) into itself, satisfying the conditions [3.1.1], [3.4.3]. Then we have the following:

- (a) For every $n \in N0$, $D(y_n, y_{n+1}, y_{n+2}) = 0$,
- (b) For every i, j, $k \in N0$, $D(y_i, y_j, y_k) = 0$, where $\{y_n\}$ is the sequence in X defined by [1.4].

PROOF OF THE LEMMA: (a) By(3.1.1) since $A(X) \subset T(X)$, for any arbitrary point $x_0 \in X$, there exists a point $x_1 \in X$ such that $Ax_0 = Tx_1$. Since $B(X) \subset S(X)$, for any arbitrary point $x_1 \in X$, there exists a point $x_2 \in X$ such that $Bx_1 = Sx_2$ and so on. Inductively, we can define a sequence $\{y_n\}$ in X such that

[1.4] $y_{2n} = Tx_{2n+1} = Ax_{2n}$ and $y_{2n+1} = Sx_{2n+2} = Bx_{2n+1}$ for $n = 0,1,2,\ldots$

In [1.3], taking $x = x_{2n+2}$, $y = x_{2n+1}$, $z = x_{2n}$ we have,

 $\left[1 + p \left\{ D(Ax_{2n+2}, Sx_{2n+2}, y_{2n}) \right. \right. + \left. D(Bx_{2n+1}, Tx_{2n+1}, y_{2n}) \right\} \right]$

 $D(Ax_{2n+2},Bx_{2n+1},y_{2n})$

 $\leq p[D^{2}(Ax_{2n+2},Sx_{2n+2},y_{2n}) + D^{2}(Bx_{2n+1},Tx_{2n+1},y_{2n})]$

 $\begin{array}{ll} + & \phi(& D(Sx_{2n+2}, Tx_{2n+1}, y_{2n}), & D(Ax_{2n+2}, Sx_{2n+2}, y_{2n}), \\ D(Bx_{2n+1}, Tx_{2n+1}, y_{2n}), & \end{array}$

 $D(Ax_{2n+2}, Tx_{2n+1}, y_{2n}), D(Bx_{2n+1}, Sx_{2n+2}, y_{2n}))$

 $[1 + p\{D(y_{2n+2}, y_{2n+1}, y_{2n}) + D(y_{2n+1}, y_{2n}, y_{2n})\}] D(y_{2n+2}, y_{2n+1}, y_{2n})$

 $\leq p[D^{2}(y_{2n+2},y_{2n+1},y_{2n}) + D^{2}(y_{2n+1},y_{2n},y_{2n})]$ $+ \phi(D(y_{2n+1},y_{2n},y_{2n}), D(y_{2n+2},y_{2n+1},y_{2n}), D(y_{2n+1},y_{2n},y_{2n}),$

 $D(y_{2n+2},y_{2n},y_{2n}),$

 $\begin{array}{l} D(y_{2n+1},y_{2n+1},y_{2n})) \\ [1+p\{D(y_{2n+2},y_{2n+1},y_{2n})+0\}] \ D(y_{2n+2},y_{2n+1},y_{2n}) \end{array}$

 $\leq p[D^2(y_{2n+2},y_{2n+1},y_{2n})+0]+\phi(0,D(y_{2n+2},y_{2n+1},y_{2n}),0,0,0)\\ D(y_{2n+2},y_{2n+1},y_{2n})\leq \phi(0,D(y_{2n+2},y_{2n+1},y_{2n}),0,0,0)\\ \leq D(y_{2n+2},y_{2n+1},y_{2n}).$

which is a contradiction. Thus we have $D(y_{2n+2},y_{2n+1},y_{2n})=0$, similarly, we have $D(y_{2n+1},y_{2n},y_{2n-1})=0$.

Hence, for n = 0,1,2,..., we have [1.4] $D(y_{n+2},y_{n+1},y_n) = 0$.

(b) For all $z \in X$, let $d_n(z) = D(y_n, y_{n+1}, z)$ for $n = 0, 1, 2, \ldots$. By (a), we have

 $\begin{array}{lll} D(y_n,\ y_{n+2},z) \, \leq \, D(y_n,\ y_{n+2},\ y_{n+1}) \, + \, D(y_n,\ y_{n+1},z) \, + \, D(y_{n+1},z) \\ y_{n+2},z) \end{array}$

 $D(y_n,\,y_{n+2},\!z) \leq D(y_n,\,y_{n+1},\!z) + D(y_{n+1},\,y_{n+2},\!z)$

 $D(y_n, y_{n+2}, z) \le d_n(z) + d_{n+1}(z)$

Taking $x = x_{2n+2}$ and $y = x_{2n+1}$ in [3.1.3], we have

 $D(Ax_{2n+2},Bx_{2n+1},z) \le p[D^2(Ax_{2n+2},Sx_{2n+2},z)]$

 $\begin{array}{lll} +D^2(Bx_{2n+1},Tx_{2n+1},z)] & + & \phi(& D(Sx_{2n+2},Tx_{2n+1},z), \\ D(Ax_{2n+2},Sx_{2n+2},z), & & \end{array}$

 $D(Bx_{2n+1},Tx_{2n+1},\!z),\!D(Ax_{2n+2},\!Tx_{2n+1},\!z),\,D(Bx_{2n+1},\!Sx_{2n+2},\!z))$

 $\left[1 + p\{D(y_{2n+2}, y_{2n+1}, z) + D(y_{2n+1}, y_{2n}, z)\}\right]D(y_{2n+2}, y_{2n+1}, z)$

 $\leq p[D^2(y_{2n+2},y_{2n+1},z) + D^2(y_{2n+1},y_{2n},z)] + \phi(D(y_{2n+1},y_{2n},z), D(y_{2n+2},y_{2n+1},z),$

 $D(y_{2n+1},y_{2n},z), D(y_{2n+2},y_{2n},z), D(y_{2n+1},y_{2n+1},z))$

[1.5] $[1+p{d_{2n+1}(z) + d_{2n}(z)}] d_{2n+1}(z)$

 $\leq p[D^2_{2n+1}(z) + D^2_{2n}(z)] + \phi(d_{2n}(z), d_{2n+1}(z), d_{2n}(z) + \{d_{2n}(z) + d_{2n+1}(z)\}, 0)$

Now, we shall show that $\{d_n(z)\}$ is a non increasing sequence in R^+ . In fact, let $d_{n+1}(z) > d_n(z)$ for some n.

By [1.5] we have, $d_{2n+1}(z) < d_{2n+1}(z)$, which is a contradiction in R^+ .

Now, we claim that $d_n(y_m) = 0$ for all non negative integers m, n.

Case 1. $n \ge m$. Then we have $0 = d_m(y_m) \ge d_n(y_m)$.

Case 2. $n \le m$. By (M_4), we have

 $d_n(y_m) \le d_n(y_{m-1}) + d_{m-1}(y_n) \le d_n(y_{m-1}) + d_n(y_n) = d_n(y_{m-1})$

By using the above inequality repeatedly, we have

 $d_n(y_m) \leq d_n(y_{m\text{-}1}) \leq d_n(y_{m\text{-}2}) \leq \ldots \ldots \leq d_n(y_n) = 0,$

which completes the proof of our claim.

Finally, let i, j, and k be arbitrary non-negative integers. We may assume that i < j. By (M_4) , we have

 $D(y_i,y_j,y_k) \leq d_i(y_j) + d_i(y_k) + D(y_{i+1},\,y_j,\,y_k) = D(y_{i+1},y_j,\,y_k).$

Therefore, by repeatition of the above inequality, we have $D(y_i, y_i, y_k) \le D(y_{i+1}, y_i, y_k) \le \dots \le D(y_i, y_i, y_k) = 0$.

This completes the proof.

LEMMA [3]: Let A, B, S and T be mappings from a D-metric space (X, D) into itself satisfying the following conditions [1.1] and [1.3]. Then the sequence $\{y_n\}$ defined by [1.4] is a Cauchy sequence in X.

PROOF OF THE LEMMA : In the proof of LEMMA [2], since $d_n(z)$ is a non increasing sequence in R^+ , by [1.3], we have,

 $[1+p\{D(Ax_2,Sx_2,z)+D(Bx_1,Tx_1,z)\}]D(Ax_2,Bx_1,z)$

 $\leq p[d^2(Ax_2,Sx_2,z) + d^2(Bx_1,Tx_1,z)] + \phi(D(Sx_2,Tx_1,z), \\ D(Ax_2,Sx_2,z),D(Bx_1,Tx_1,z),$

 $D(Ax_2,Tx_1,z), D(Bx_1,Sx_2,z))$

 $[1+p\{D(y_2,y_1,z)+D(y_1,y_0,z)\}]D(y_2,y_1,z)$

 $\leq p[d^2(y_2,y_1,z) + d^2(y_1,y_0,z)] + \phi(D(y_1,y_0,z), D(y_2,y_1,z),$

 $D(y_1,y_0,z), D(y_2,y_0,z), D(y_1,y_1,z))$

 $\left[1 + p\{d_1(z) + d_0(z)\} \right] d_1(z) \le p \left[d^2_1(z) + d^2_0(z) \right] + \phi(d_0(z), \, d_1(z), \\ d_0(z), \, \{d_0(z) + d_1(z)\}, \, 0)$

 $d_1(z) \leq \varphi(d_0(z),\, d_0(z),\, d_0(z),\, \{d_0(z) + d_0(z)\},\, 0)$

ISSN (Online): 2319-7064

```
Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611
                                                                              \leq \ p\lceil d^2(Au,Su,z) \ + d^2(Bx_{2n+1},Tx_{2n+1},z) ] \ + \ \varphi(\ D(Su,Tx_{2n+1},z),
d_1(z) \le \gamma(d_0(z))
                                                                              D(Au,Su,z),
and d_2(z) \le \gamma(d_1(z)) \le \gamma(\gamma(d_0(z)) = \gamma^2(d_0(z)).
In general, we have d_n(z) \le \gamma^n(d_0(z)).
                                                                              D(Bx_{2n+1},Tx_{2n+1},z),D(Au,Tx_{2n+1},z),D(Bx_{2n+1},Su,z))
                                                                              [1+p\{D(Au,Su,z)+D(y_{2n+1},y_{2n},z)\}]D(Au,y_{2n+1},z)
Thus, if d_0(z) > 0, by LEMMA [3.1] \lim_{n\to\infty} d_n(z) = 0. If d_0(z)
                                                                              \leq p[d^2(Au,Su,z) + d^2(y_{2n+1},y_{2n},z)] + \phi(D(Su,y_{2n},z), D(Au,
= 0, we have clearly \lim_{n\to\infty} d_n(z) = 0 since d_n(z) = 0 for n =
                                                                              Su,z), D(y_{2n+1},y_{2n},z),
1,2, ...
                                                                              D(Au, y_{2n}, z), D(y_{2n+1}, Su, z))
                                                                              Since \lim_{n\to\infty} d_n(z) = 0 in the proof of Lemma2, letting n\to\infty,
Now, we shall prove that \{y_n\} is a Cauchy sequence in X.
Since \lim_{n\to\infty} d_n(z) = 0, it is sufficient to show that a
                                                                              [1+p\{D(Au, w,z) + D(w, w,z)\}]D(Au, w,z)
subsequence \{y_{2n}\} of \{y_n\} is a Cauchy sequence in X.
                                                                              \leq p[d^2(Au, w,z) + d^2(w, w, z)] + \phi(D(w, w,z), D(Au, w,z))
Suppose that the sequence \{y_{2n}\} is not a Cauchy sequence
                                                                              w,z),D(w,w,z),
in X. Then there exist a point z \in X, an \varepsilon > 0 and strictly
                                                                              D(Au, w,z), D(w, w,z))
increasing sequences \{m(k)\}, \{n(k)\} of positive integers
                                                                              D(Au, w,z) \le \phi(0, D(Au, w,z), 0, D(Au, w,z), 0) < \gamma(D(Au, w,z), 0)
such that k \le n(k) \le m(k),
                                                                              (w,z) \leq D(Au, w,z)
[1.6] (y_{2n(k)},\!y_{2m(k)},\!z) \geq \epsilon and D(y_{2n(k)},\!y_{(2m\!-\!2)(k)},\,z) < \epsilon
                                                                              which is contradiction. Hence Au = w = Sw, that is u is a
for all k = 1,2,... By LEMMA[3.2] anD(M<sub>4</sub>), we have
                                                                              coincidence of A and S.
D(y_{2n(k)}, y_{2m(k)}, z) - D(y_{2n(k)}, y_{2m(k-2)}, z) \le D(y_{2m(k-2)}, y_{2m(k)}, z)
                                                                              Similarly, we can show that v is a coincidence point of B
\leq d_{2m(k-2)}(z) + d_{2m(k-1)}(z)
                                                                              and T.
Since \{D(y_{2n(k)}, y_{2m(k)}, z) - \epsilon \} and \{ \epsilon - D(y_{2n(k)}, y_{2m(k-2)}, z) \}
are sequences in R^{^{+}} and \lim_{n\rightarrow\infty}d_{n}(z)=0, we have
                                                                              THEOREM [2]: Let A, B, S and T be mappings from a D-
[1.7] \lim_{k\to\infty} D(y_{2n(k)}, y_{2m(k)}, z) = \epsilon and \lim_{k\to\infty} D(y_{2n(k)}, y_{2mk-2}, z) = \epsilon
                                                                              metric spaces (X,D) into itself satisfying the conditions
z = \epsilon
                                                                              (1.1), (3.1.3), (3.1.10) and the following:
Note that, by (M_4), we have
                                                                              [3.2.1] the pairs A, S and B,T are compatible mappings of
[1.8] | D(x,y,a) - D(x,y,b)| \le D(a,b,x) + D(a,b,y)
                                                                              type (P).
for all x, y, a, b \in X. Taking x = y_{2n(k)}, y = a, a = y_{2m(k-1)} and
                                                                              [3.2.2] the pairs A,S and B, T are sequentially continuous at
b = y_{2m(k)} in [1..8] and using lemma [2] and [1.7], we have
                                                                              their coincidence points.
\lceil 1.9 \rceil \ lim_{k \rightarrow \infty} \ D(y_{2n(k)}, \, y_{2m(k\text{-}1)}, \, z) = \epsilon.
                                                                              Then A, B, S and T have a unique common fixed point in X.
Once again, by using lemma [2], [1..7] and [1.8], we have
[1.10] \lim_{k\to\infty} D(y_{2n(k)+1}, y_{2m(k)}, z) = \epsilon \text{ and } \lim_{k\to\infty} D(y_{2n(k-1)}, z)
                                                                              PROOF OF THEOREM: By theorem [3.1], there exist
y_{2m(k-1)}, z) = \varepsilon.
                                                                              two points u, v in X such that Au = Su = w and Bv = Tv =
                                                                              w, respectively, since A and S are compatible mappings of
Thus, by [1.3], we have,
                                                                              type(P), by Proposition 1 ASu = SSu = SAu = AAu, which
[1.11]
[1+p\{D(Ax_{2m(k)},Sx_{2m(k)},z)+D(Bx_{2n(k+1)},Tx_{2n(k+1)},z)\}]D(Ax_{2m(k)},z)
                                                                              implies that Aw = Sw, Similarly B and T are compatible
,Bx_{2n(k+1)},z)
                                                                              mapping of type(P) we have Bw = Tw. Now, we prove that
\leq p[d^2(Ax_{2m(k)},Sx_{2m(k)},z)+d^2(Bx_{2n(k+1)},Tx_{2n(k+1)},z)]
                                                                              Aw = w. If Aw \neq w, then by (4.2), we have
                                                                              [1+p\{D(Aw,Sw,z)+D(Bx_{2n+1},Tx_{2n+1},z)\}]\ D(Aw,Bx_{2n+1},z)
        φ(
                 D(Sx_{2m(k)}, Tx_{2n(k+1)}, z),
                                                D(Ax_{2m(k)},Sx_{2m(k)},z),
                                                                                                              +d^2(Bx_{2n+1},Tx_{2n+1},z)
D(Bx_{2n(k+1)}, Tx_{2n(k+1)}, z),
                                                                                      p[d^2(Aw,Sw,z)]
D(Ax_{2m(k)},\!Tx_{2n(k+1)},\!z),\,D(Bx_{2n(k+1)},\!Sx_{2m(k)},\!z))
                                                                              D(Sw,Tx_{2n+1},z),D(Aw,Sw,z),
[1+p\{D(y_{2m(k)},y_{2m(k-1)},z)\}
                                                  D(y_{2n(k+1)}, y_{2n(k)}, z)
                                                                              D(Bx_{2n+1},Tx_{2n+1},z), D(Aw,Tx_{2n+1},z),D(Bx_{2n+1},Sw,z))
                                                                              [1+p\{D(Aw,Sw,z)+D(y_{2n+1},y_{2n},z)\}]D(Aw,y_{2n+1},z)
D(y_{2m(k)}, y_{2n(k+1)}, z)
\leq p[d^2(y_{2m(k)},y_{2m(k-1)},z) + d^2(y_{2n(k+1)},y_{2n(k)},z)] + \phi(D(y_{2m(k-1)},z))
                                                                                                                         p[d^2(Aw,Sw,z)+d^2(y_{2n+1},
_{1)},y_{2n(k)},z),
                                                                              y_{2n},z)]+\phi(D(Sw,y_{2n},z), D(Aw,Sw,z),
D(y_{2m(k)}, y_{2m(k-1)}, z), D(y_{2n(k+1)}, y_{2n(k)}, z), D(y_{2m(k)}, y_{2n(k)}, z),
                                                                               D(y_{2n+1},y_{2n},z), D(Aw,y_{2n},z), D(y_{2n+1},Sw,z))
                                                                              Since lim_{n\to\infty}~d_n(z) = 0 in the proof of Lemma2, letting
D(y_{2n(k+1)}, y_{2m(k-1)}, z))
As k \to \infty in [1.11] and noting that d is continuous, we have
                                                                              n\rightarrow\infty, we have
\varepsilon \le \phi(\varepsilon, 0, 0, \varepsilon, \varepsilon) < \gamma(\varepsilon) < \varepsilon
                                                                              [1+p\{D(Aw, w,z) + D(w, w,z)\}]D(Aw, w,z)
which is a contradiction. Therefore, \{y_{2n}\} is a Cauchy
                                                                                                                         p[d^{2}(Aw, w,z) + d^{2}(w, w,
sequence in X and so the sequence \{y_n\} is a Cauchy
                                                                              z)] + \phi(D(w, w,z), D(Aw, w,z), D(w,w,z),
sequence in X. This completes the proof.
                                                                              D(Aw, w,z), D(w, w,z))
                                                                              D(Aw, w,z) \le \phi(0, D(Aw, w,z), 0, D(Aw, w,z), 0) < \gamma
PROOF OF THE THEOREM :_By lemma[3], the
                                                                              (D(Aw, w,z))
```

PROOF OF THE THEOREM:_By lemma[3], the sequence $\{y_n\}$ defined by [1.2] is a Cauchy sequence in $S(X) \cap T(X)$. Since $S(X) \cap T(X)$ is a complete subspace of X, $\{y_n\}$ converges to a point w in $S(X) \cap T(X)$. On the other hand, since the subsequences $\{y_{2n}\}$ and $\{y_{2n+1}\}$ of $\{y_n\}$ are also Cauchy sequences in $S(X) \cap T(X)$, they also converge to the same limit w. Hence there exist two points u, v in X such that Su = w and Tv = w, respectively.

By [1.3], we have

 $[1+p\{D(Au,Su,z)+D(Bx_{2n+1},Tx_{2n+1},z)\}]D(Au,Bx_{2n+1},z)$

```
\begin{array}{l} D(Aw,\ w,z) \leq \ \phi(\ 0,\ D(Aw,\ w,z),\ 0,D(Aw,\ w,z),0) < \gamma \\ (D(Aw,\ w,z)) \\ < D(Aw,\ w,z) \\ \text{which is contradiction .} \\ \text{Hence } Aw = w = Sw. \\ \text{Similarly, we have } Bw = Tw = w. \\ \text{This means that } w \text{ is a common fixed point of } A, B, S \text{ and } T. \\ \text{The uniqueness of the fixed point } w \text{ follows from } [1.3]. \\ \text{This complete the proof.} \end{array}
```

International Journal of Science and Research (IJSR)

ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Reference

- [1] Constantin, A.: Common fixed points of Weakly Commuting Mappings in D-Metric spaces, Math. Japon., 36(3) (1991), 507-514.
- [2] Das B.K. and Gupta S. (1975): An Extension of Banach Contraction Principle Through Retional Expression, Ind.
- [3] J. Pure Appl. Math 6, 1455-58.
- [4] 5. Fisher, B.: Mathe Sem, Notes, Kobe Univ., 10, 17 26(1982).
- [5] Gähler S. (1963/64): D-Metric Raume Und Topologische Struktur, Math. Nachr. 26, 115-148.
- [6] Gahler, S.: Zur geometric D-metrische Raume, Rev. Roum. De Math. Pures et Appl., 11(1968), 665-667.
- [7] Imdad, M., Khan, M.S and Khan, M. D.: A common fixed point theorem in D-metric spaces, Math. Japon., 36(5)(1991), 907-914.
- [8] Iseki, K., Sharma, P. L. and Sharma, B. K.: Contraction type mappings on D-metric spaces, Math. Japon. 21(1976), 67-70.
- [9] Iseki, K.: A property of orbitally continuous mappings on D- metric spaces, Math. Sem. Notes, Kobe Univ., 3(1975), 131-132.
- [10] Khan, M. S.: Convergence of sequence of fixed points in D-metric spaces, Indian J. Pure Appl. Math. (10)(1979), 106D-1067.
- [11] Khan, M. S.: On fixed point theorems in D-metric spaces. Pubbl. Inst. Math. (BeorgraD) (N. S.), 41(1980), 107-112.
- [12] Khan, M. S. and Swaleh: Results Concerning fixed points in D-metric spaces, Mth. Japon., 29(1984), 519-525.
- [13] 14 Parsai V. and Singh B. (1991): Some fixed point theorem in D- metric space, Vikarm math.soc. 33-37.

Author Profile

Raghu Nandan Patel is in Department of Mathematics, Government Naveen College, Balrampur, Chhattisgarh, India

Manoj Kumar Tiwari is in Department of Mathematics, Government Girls Polytechnic College, Bilaspur, Chhattisgarh, India