
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Study of Dataset Feature Filtering of OpCode for
Malware Detection Using SVM Training Phase

Bhushan Kinholkar

PG Student, Department of Computer Science Engineering, SSBT‟s College of Engineering and Technology, Jalgaon, India.

Abstract: Malware can be defined as any type of malicious code that has the potential to harm a computer or network. To detect
unknown malware families, the frequency of the appearance of Opcode (Operation Code) sequences are used through dynamic analysis.
Opcode n-gram analysis used to extract features from the inspected files. Opcode n-grams are used as features during the classification
process with the aim of identifying unknown malicious code. A support vector machine (SVM) is used to create a reference model, which
is used to evaluate two methods of feature reduction, which are “area of intersect” and “subspace analysis using eigenvectors.” The
SVM is configured to traverse through the dataset searching for Opcodes that have a positive impact on the classification of benign and
malicious software. The dataset is constructed by representing each executable file as a set of Opcode density histograms. Classification
tasks involve separating dataset into training and test data. The training sets are classified into benign and malicious software. In area
of interest the characteristics of benign and malicious Opcodes are plotted as normal distributions. They are grouped into density curves
of a single Opcode. The key feature to note is the overlapping area of the two density curves. In Subspace analysis the importance of
individual OpCodes, are investigated by the eigenvalues and eigenvectors in subspace.PCA is used for data compression and mapping.
The eigenvector filter Opcodes coincides with the SVM classify the malware Opcodes feature.

Keywords: SVM, N-gram analysis, obfuscation, area of intersect.

1. Introduction

The recent growth in high-speed Internet connections enable
malware to propagate and infect hosts very quickly, therefore
it is essential to detect and eliminate new (unknown)
malware. OpCode sequence is used to detect the malware in
runtime environment.

N-gram analysis in feature extraction increases the
computational overhead. The computation processing
overhead is reduced by the filtering the less or irrelevant
feature. Two types of filtering techniques are used. Area of
interest is used to investigate the feature of the dataset by
obtaining the overlapping area of the density curves between
malicious and benign software. In subspace analysis the
feature extraction for dataset is based on the eigen values and
eigenvectors In the subspace. PCA technique is used to map
the data in the subspace, which provides original data.

Signature-based detection is based on investigating
suspicious code and gathering information in order to
characterize any malicious intent of the malware. The main
objective of this approach is to extract specific byte
sequences of code as signatures and to look for a signature in
suspicious files. For large datasets, or costly (computation)
distance functions, the training process associated with
learning machines can become immense. Thus, the feature
explosion that occurs with N-grams for large values of N
needs to be addressed.

Anti-virus vendors are facing huge quantities (thousands) of
suspicious files everyday. These files are collected from
various sources including dedicated honeypots, third party
providers and files reported by customers either
automatically or explicitly. The large amount of files makes
efficient and effective inspection of files particularly
challenging.

Several analysis techniques for detecting malware, which
commonly distinguished between dynamic and static, have
been studied. In dynamic analysis (also known as behavioral
analysis) the detection of malware consists of information
that is collected from the operating system at runtime (i.e.,
during the execution of the program) such as system calls,
network access and files and memory modifications. For
large datasets, or costly (computation) distance functions, the
training process associated with learning machines can
become immense. Thus, the feature explosion that occurs
with
N-grams for large values of N needs to be addressed.

This paper investigates approaches to filtering out irrelevant
features and in Section 1, with a discussion on related
research. In Section 2, related work is discussed. Overall
system overview is discussed in Section 3. Section 4 how
dataset is crate is discussed. SVM for classification is
discussed in Section 5. Section 6 Proposed approach is
discussed area of intersect, subspace analysis of eigenvalue
and eigenvector. Conclusion is discussed in Section 7.

2. Related Work

Lakhotia et al. [1] presented a state machine method to
detect obfuscated calls relating to push , pop and ret opcodes
that are mapped to stack operations. However, their approach
did not model situations where the push and pop instructions
are decomposed into multiple instructions, such as directly
manipulating the stack pointer using mov commands.

Bilar [2] used static analysis to obtain opcode distributions
from PE files that could be used to identify polymorphic and
metaphoric malware. Bilar‟s findings show that many
prevalent opcodes (mov, push, call, etc.) did not make good
indicators of malware. However, lesser frequent opcodes
such ja, adc, sub,inc and add proved to be better indicators
of malware. In other research,

Paper ID: NOV151981 474

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Bilar [3] compared the statically generated CFG of benign
and malicious code. Their findings showed a difference in
the basic block count for benign and malicious code. Bilar
concluded that malicious code has a lower basic block count,
implying a simpler structure: Less interaction, fewer
branches and less functionality.

N-grams are based on a signature approach that relies on
small sequences of strings or byte codes that are used to
detect malware. Santos et al. [4] demonstrated that n-gram
signatures could be used to detect unknown malware. The
experiment extracted code and text fragments from a large
database of program executions to form signatures that are
classified using machine learning methods.

Asaf Shabtail, Robert Moskovitch,[5]Classification
algorithms are employed for the detection of unknown
malicious code. Byte n-gram patterns are used in to represent
the inspected files. The inspected files are used as patterns
for OpCode n-gram patterns which are extracted from the
files after disassembly. The OpCode n-gram patterns are
used as features for the classification process. The
classification process main goal is to detect unknown
malware within a set of suspected files and used in antivirus
software as signatures. A problem of this domain is the
imbalance problem in which the distribution of the classes
varies. For detecting malware, dynamic and static anlysis is
used. In dynamic the detection of malware consists of
information that is collected from the operating system at
runtime. In static, the information is collected from explicit
and implicit observations in its binary/source code.
Classification algorithms uses the binary code of a file (i.e.,
byte n-grams), and classifiers are used to learn patterns in the
code in order to classify new (unknown) files as malicious or
benign. Text categorization technique is used for Malware
categorization which is based on OpCode n-gram patterns,
generated by disassembling the inspected executable files, to
represent the files. OpCode expressions, extracted from the
executable file, are expected to provide a more meaningful
representation of the code rather than byte sequence. Binary
classifiers for the detection of unknown malicious code
introduce the imbalance problem. The imbalance problem
refers to scenarios in which the proportions of the classes are
not equal. Imbalance problem leads to misclassification of
datasets.

Xu Chen, John Andersen, Z. Morley Mao[6] Malware is
becoming more advanced.A detailed taxonomy of malware
defender fingerprinting techniques should be developed.A
novel fingerprinting method assistsmalware propagation, and
creates an effective new techniqueto protect production
systems.Systems should be divided as production systems
and monitoring systems.Taxonomy is used to capture
essential techniques fordistinguishing between productions
and monitoring systems. A remote network based
reconnaissance is used todifferentiate between VMs and real
machines.A new paradigm is used for protecting production
systemsmaking them appear to be monitoring systems. Both
VMs and debuggers make hardware detectable changes
when malware are present. Debuggers communicate with the
rest of the system. The execution environment of a process is
altered when it's running in a VM or under a debugger.

R. Sekar, Bendre D. , Dhurjati P., Bollineni.[7] Intrusion
detection approach identifies anomalous sequences of system
calls executed by programs. A natural way for learning
sequences is to use a finite-state automaton (FSA). FSA-
learning is computationally expensive, and requires much
space usage. The algorithm proposed in this project approach
builds a compact FSA in a fully automatic and efficient,
without requiring access to source code for programs. The
space requirements are also reduced. The FSA uses only a
constant time per system call during the learning as well as
detection period. This leads to low overheads for intrusion
detection. More accurate detection is performed. The training
periods needed for our FSA based approach are shorter.
Moreover, false positives rates are reduced.

Clemens Kolbitsch, Paolo Milani Comparetti, Christopher
Kruegel,[8]Host-based detection approaches suffer from
ineffective detection models. Host-based detection models
concentrate on the features of a specific malware instance,
and are often easily evadable by obfuscation or
polymorphism. In order to address the shortcomings of
ineffective models, several dynamic detection approaches
have been proposed that aim to identify the behavior
exhibited by a malware family. These approaches are
unfortunately too slowto be used as real-time detectors on
the end host. In this project, a malware program is analyzed
in a controlled environment to build a model that
characterizes its behavior and also describe the information
flows between the system calls essential to the malware‟s
mission. The program slices are responsible for each
information flows. For detection, these slices are matched
against the runtime behavior of an unknown program. The
behavior is then automatically translated into detection
models that operate at the host level. Rapid detection and
elimination of novel Malware is made. The developed fine-
grained model is used to monitor and observe the
interactions of Malware with operating system. Using
dynamic detection is much efficient compared to the
conventional static model.

Ulrich Bayer, Imam Habibi, Davide Balzarotti, Engin Kirda,
[9]Malicious software (or malware) is one of the major
security threats facing the Internet today. To develop
effective malware countermeasures and mitigation
techniques understanding of malware behavior is important.
To detect the behavior of Malware, malicious code samples
that were collected by Anubis. Anubis is a dynamic malware
analysis platform that executes submitted binaries in a
controlled environment. The analysis is performed by the
system monitors by invocating the important Windows API
calls and system services, it records the network traffic, and
it tracks data flows. The reports are generated, while
submitting the binaries. Anubis receives Malware samples
through a public web interface and a number of feeds from
security organizations and anti-malware companies. When
compiling statistics about the behaviors of malicious code,
certain Malware families make use of polymorphism. To
address this problem, analysis of malware behavior are also
based on malware families (clusters). The influence of code
polymorphism on malware statistics is also addressed.
Anubis submitters are categorized as following: large,
medium, small, single. The behavioral information with
respect to the number of malware families is approximated

Paper ID: NOV151981 475

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

as clusters of samples that exhibit similar behaviors. Several
activities are performed to detect the behavior of Malware.
Several Malware activities are detected using following
activities. File system activity, Registry activity, Network
activity, GUI windows, Botnet activity, and Sandbox
detection. Each of the activities detects the common behavior
and clusters it to detect the similar group.

3. System Overview

Figure1: System Overview

The motivation for this research is to reduce the
computational overhead required when N-gram analysis is
performed on low-level fine grain data. Therefore,
developing a lightweight filter that will reduce the number of
features to be processed will in turn reduce the
computational overhead; thus making the training phase of
the SVM approach a viable solution for N-gram analysis
where large feature sets are generated. Fig. 1 illustrates an
overview of the experimental approach taken in this paper.
The programs under investigation are run in a test
environment with a debug tool monitoring the runtime
opcodes. After completion, the data is parsed into opcode
histograms and after some conditioning the dataset is passed
to the SVM to construct a reference model. The reference
model is constructed by configuring the SVM to perform an
exhaustive search by traversing through all the features,
searching for those opcodes that have a positive impact on
the classification of benign and malicious software. To
evaluate the various filtering algorithms, each filter processes
the original dataset in an attempt to reproduce the same
reference model produced by the SVM.

4. Dataset Creation

Operational Codes (Opcodes) are machine language
instructions that perform CPU operations on operands such
as arithmetic, memory/data manipulation, logical operations
and program flow control. created a dataset of malicious and
benign executables for the Windows operating system, the
system most commonly used and attacked today. This
malicious and benign file collection was previously used.
Acquired some malicious files from the VX Heaven website.
To identify the files, used the Kaspersky antivirus. Benign
files, including executable and DLL (Dynamic Linked
Library) files, were gathered from machines running the
Windows XP operating system on our campus. The benign
set contained some files.

To ensure that Ollydbg tool correctly unpacked and ran the
malware, samples were restricted to programs that ollydbg
correctly identified as packed or encrypted. The malware
samples were run for 3 minutes ensuring that not only the
loading and unpacking phases were recorded but also that
malicious activity occurred, i.e., pop-up, writing to the disk
or registry files. While there are 344 Intel opcodes, only 149
different opcodes are recorded during the captured datasets
for all programs traced during this experiment. The dataset is
normalized by calculating the percentage density of opcodes
rather than the absolute opcode count to remove time
variance introduced by different run lengths of the various
programs. The dataset is sorted into most commonly
occurring opcodes as illustrated in Fig. 2. An initial
assessment of the data shows two key properties a) The
distribution of the various opcodes does not conform to any
consistent distribution shape; rather opcode distribution
varies greatly as illustrated by the difference between the
mov and ret opcodes, described later in VI: ‟Area of
Intersect‟. Therefore, no one data shape could be assumed
and hence a nonparametric method should be used. b) The
data values are a percentage of the opcodes within a
particular program. For example, 0 means that the opcode
does not occur within that program trace or 0.25 means that
25% of the program trace comprises of that opcode. To
improve the performance of the SVM the data is linearly
scaled.

Figure 2: OPcode Percentage

Paper ID: NOV151981 476

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

5. Support Vector Machine

SVM classifiers consist of a hyperplane dividing a n
dimensional space based representation of the data into two
regions. This hyperplane is the one that maximizes the
margin between the two regions or classes (in our case,
malware or benign software). Maximal margin is defined by
the largest distance between the examples of the two classes
computed from the distance between the closest instances of
both classes (called supporting vectors machine).Support
Vector Machine (SVM) is a technique used for data
classification and was introduced by Boser et al. in 1992
[10]and is categorized as a kernel method. The kernel
method algorithm depends on dot-products function, which
can be replaced by other kernel functions that map the data
into a higher dimensional feature space.

This has two advantages: Firstly, the ability to generate a
nonlinear decision plane and secondly, allows theuser to
apply a classification to data that does not have an intuitive
approach i.e., SVM training when the data has a
nonregularor unknown distribution.

The dataset consists of 149 different opcodes, each having
their own unique distribution characteristics and therefore a
SVM is an appropriate choice. As mentioned earlier, the data
is linearly scaled to improve the performance of the SVM.
The main advantages of scaling are it avoids attributes with
greater numeric ranges dominating those with smaller
numeric ranges and it avoids numerical difficulties during
the calculation as kernel values usually depend on the inner
products of feature vectors, e.g., in the case of the linear
kernel and the polynomial kernel, large attribute values
might cause numerical problems. SVM is used to create a
reference model to validate the filter experiments that are
presented in the subsequence sections. The SVM is
configured to traverse through the dataset searching for
opcodes that have a positive impact on the classification of
benign and malicious software. The search starts with six
opcodes scanning across the complete data sequence for all
unique permutations for that number of opcodes. The search
is repeated for five opcodes and then four opcodes. An
average of these results is sorted by most occurrences as
illustrated in Fig. 3, which show the most important opcodes
as chosen by the SVM. Only unique opcodes are selected for
eachSVM classification test and no duplicates of repeated
opcode patterns are processed.

Figure 3: SVM OPcode Sensitvity

6. Reduction Approach

N-gram analysis presents a dimensionality problem in terms
of the number of raw features produced and if left unfiltered
would result in a high computation cost during the SVM
training phase. To reduce this effort and narrow the area of
search, this research aims to identify filters that can select the
optimum features prior to feeding them to a SVM. The
hypothesis is: Malware that employs evasion techniques will
exhibit telltale signs in terms of run-time opcodes; such as a
higher density of instructions that are commonly used in
malware to evade detection and carry out malicious activity.
Therefore filtering out less relevant opcodes and allowing the
SVM to focus on a subset will result in a fast training phase.
This section investigates two approaches to filtering
irrelevant opcodes. Starting with an investigation into the
‟area of intersect‟ between benign and malicious
distributions using Linear programming techniques and then
concludes with an investigation into subspace analysis using
Principle Component Analysis (PCA) and Eigenvectors.

6.1. Area of Intersect

Consider the simplistic characteristics of benign and
malicious opcodes with a normal distribution as shown in
Fig. 4. The plots are grouped into density curves for benign
and malicious software of a single opcode. The horizontal
axis relates to the percentage of a given program that is made
up of a particular opcode and the vertical axis indicates the
number of programs with that percentage of opcode. The key
feature to note is the overlapping area of the two density
curves. The greater the difference between the mean of the
curves and narrower the standard deviation reduces the
overlapping area and therefore reduces the interference and
corresponding misclassification of the benign and malicious
software. This implies that a simple analysis of low order
statistics, such as calculating the product of the mean and the
inverse of the standard deviation to determine the
overlapping area might yield the best indicators (opcodes) of
benign and malicious software. Hence, calculating the
overlapping area for the density curves provides a numerical
value and is shown in Fig. 4. These results need to be placed
in a context that provides meaning in term of relative
importance. Those opcodes chosen by the SVM as the
reference model are highlighted.

Paper ID: NOV151981 477

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 4: Area of Intersect

It can be seen that the opcodes with the least area of intersect
correlate in part to the reference model. While this approach
removes 75% of opcodes that provide no values an important
opcode (adc) is removed therefore the ‟area of intersect‟
cannot be considered a useful tool for removing irrelevant
opcodes. The SVM selected: ja, adc, sub, inc, rep and add as
the reference model and as adc is filtered out by the ‟area of
intersect‟ filter, which contradicts the hypothesis that
opcodes with the least area of intersect make the best
indicator of benign and malicious software. Two further
points need to be considered. Firstly, the overall density of a
particular opcode needs to be considered in the context of
their area of intersect and its population as it needs to be
significantly important to be considered as an indicator of
benign and malicious software. Taking ja and rep opcodes
(SVM selected range) as reference points, it can see from the
data presented in Table II that the other opcodes relating to
population and area of intersect fall within the characteristics
of ja and rep. Therefore the area of intersect does not tell the
full story as many other opcodes such as ret, call, etc. have
lower area of intersect than ja and a population that lays
between both rep and ja. In addition the „area intersect‟ filter
removes the adc opcode. Low dimensional analysis does not
consider covariance i.e., the relationship between the
distributions of one opcode with that of another opcode. As
shown in Fig. 4, it is not always the case that opcodes with a
low area of intersect produce the best indicators of benign
and malicious software. This requires a closer inspection of
the opcode distribution curve to understand the
characteristics that make the best indicators chosen by the
SVM over the other opcodes that have similar area of
intersect and population. Therefore further investigation is
required and is carried out using Linear Programming (LP)
to understand how the area under each curve is interpreted
when a decision plane is applied. Linear programming is a
technique that is applied to optimize a linear function when
subject to linear equality and inequality constraints. LP can
be applied to the classification of benign and malicious
software. The data is in the form of a probability density
curve. The horizontal axis represents the makeup of a
program i.e., the opcode percentage that makes up a program
and the vertical axis, representing the number of programs
that have that percentage of opcodes. The probability density
is based on a percentage of opcode counts obtained from
traces during the execution of a program. The minimum
value is 0 and the maximum is the percentage of the most

occurring opcode within the captured dataset (mov). Thus the
maximum value is 0.4 (40%).

6.2 Subspace

An alternative approach to determine the importance of the
individual opcodes, thereby ranking their usefulness as
classification features, is to investigate the eigenvalues and
eigenvectors in subspace. Principal Component Analysis
(PCA) [11] is a transformation of the covariance matrix and
it is defined as this is a technique used to compress data by
mapping the data into a subspace while retaining most of the
information/ variation in the data. It reduces the
dimensionality by mapping the data into a subspace and
finding a new set of variables (fewer variables) that represent
the original data. These new variables are called principal
components (PCs) and are uncorrelated and are ordered by
their contribution (usefulness/eigenvalue) to the total
information that each contain.

7. Conclusion

This paper is study of area intersecting to using of SVM
training phase as a means of identifying malware. It shows
that malware, that is packed/encrypted, can be detected using
SVMs and by using the opcodes chosen by the SVM as a
benchmark, determined a prefilter stage using eigenvectors
that can reduce the feature set and therefore reduce the
training effort. In this study first the identification of a high
population opcode: mov that is not only is a poor indicator of
benign/malicious software,but inhibits the ability to correctly
classify software when usedit other opcodes such as ja, adc,
sub, inc, add and rep. Secondly, a subset of opcodes can be
used to detect malware. However, the SVM analysis
demonstrates that ja, adc and sub are strong indicators of
malware as they are four times more likely to be used in the
correct classification of malware than the next most
significant opcodes (inc). Several opcodes have been
identified as potential indicators of malware. Finally, using
the principal component analysis of calculating eigenvector
and eigenvalue from the dataset can safely remove irrelevant
features.

Paper ID: NOV151981 478

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

References

[1] A. Lakhotia, E. U. Kumar, and M. Venable, “A method

for detecting obfuscated calls in malicious binaries,”
IEEE Trans. Software Eng., vol. 31, no. 11, pp. 955–
968, Nov. 2005.

[2] D. Bilar, “Opcodes as predictor for malware,” Int. J.
Electron. Security Digital Forensics, vol. 1, no. 2, pp.
156–168, 2007.

[3] D. Bilar, “Callgraph properties of executables and
generative mechanisms,” AI Commun., Special Issue on
Network Anal. in Natural Sci.and Eng., vol. 20, no. 4,
pp. 231–243, 2007.

[4] I. Santos, Y. K. Penya, J. Devesa, and P. G. Garcia, “N-
grams-based file signatures for malware detection,”
S3Lab, Deusto TechnologicalFound., 2009

[5] A. Shabtai, R. Moskovitch, C. Feher, S. Dolev, and Y.
Elovici, “Detecting unknown malicious code by
applying classification techniques on opcode patterns,”
Security Informatics, vol. 1, pp. 1–22, 2012.

[6] X. Chen, “Towards an understanding of anti-
virtualization and antidebugging behavior in modern
malware,” ICDSN Proc., pp. 177–186, 2008.

[7] R. Sekar, M. Bendre, D. Bollineni, and Bollineni, R.
Needham and M. Abadi, Eds., “A fast automaton-based
method for detecting anomalous program behaviors,” in
Proc. 2001 IEEE Symp. Security and Privacy,IEEE
Comput. Soc., Los Alamitos, CA, USA, 2001, pp. 144–
155.

[8] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X.
Zhou, and X. Wang, “Effective and efficient malware
detection at the end host,” in Proc. 18th Usenix Security
Symp., 2009, pp. 351–366.

[9] U. Bayer, I. Habibi, D. Balzarotti, E. Kirda, and C.
Kruegel, “A view on current malware behaviors,” in
Proc. 2nd USENIX Conf. on Large-Scale Exploits and
Emergent Threats: Botnets, Spyware, Worms, andMore.
USENIX Association, Berkeley, CA, USA, 2009.

[10] B. E. Bernhard, G. M. Isabelle, and V. N. Vladimir, H.
Haussler, Ed., “A training algorithm for optimal margin
classifiers,” in Proc. 5th Ann.ACM Workshop on COLT
ACM Press, Pittsburgh, PA, USA, 1992, pp. 144–152.

[11] B. Schölkopf, A. Smola, and K.-R. Müller, “Kernel
principal component analysis,” Artificial Neural
Networks—ICANN’97 Lecture Notesin Comput. Sci.,
vol. 1327, pp. :583–588, 1997.

Paper ID: NOV151981 479

