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Abstract: Malware can be defined as any type of malicious code that has the potential to harm a computer or network. To detect 
unknown malware families, the frequency of the appearance of Opcode (Operation Code) sequences are used through dynamic analysis. 
Opcode n-gram analysis used to extract features from the inspected files. Opcode n-grams are used as features during the classification 
process with the aim of identifying unknown malicious code. A support vector machine (SVM) is used to create a reference model, which 
is used to evaluate two methods of feature reduction, which are “area of intersect” and “subspace analysis using eigenvectors.” The 
SVM is configured to traverse through the dataset searching for Opcodes that have a positive impact on the classification of benign and 
malicious software. The dataset is constructed by representing each executable file as a set of Opcode density histograms.  Classification 
tasks involve separating dataset into training and test data. The training sets are classified into benign and malicious software. In area 
of interest the characteristics of benign and malicious Opcodes are plotted as normal distributions. They are grouped into density curves 
of a single Opcode. The key feature to note is the overlapping area of the two density curves. In Subspace analysis the importance of 
individual OpCodes, are investigated by the eigenvalues and eigenvectors in subspace.PCA is used for data compression and mapping. 
The eigenvector filter Opcodes coincides with the SVM classify the malware Opcodes feature. 
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1. Introduction 
 
The recent growth in high-speed Internet connections enable 
malware to propagate and infect hosts very quickly, therefore 
it is essential to detect and eliminate new (unknown) 
malware. OpCode sequence is used to detect the malware in 
runtime environment.  
 
N-gram analysis in feature extraction increases the 
computational overhead. The computation processing 
overhead is reduced by the filtering the less or irrelevant 
feature. Two types of filtering techniques are used. Area of 
interest is used to investigate the feature of the dataset by 
obtaining the overlapping area of the density curves between 
malicious and benign software. In subspace analysis the 
feature extraction for dataset is based on the eigen values and 
eigenvectors In the subspace. PCA technique is used to map 
the data in the subspace, which provides original data.  
 
Signature-based detection is based on investigating 
suspicious code and gathering information in order to 
characterize any malicious intent of the malware. The main 
objective of this approach is to extract specific byte 
sequences of code as signatures and to look for a signature in 
suspicious files. For large datasets, or costly (computation) 
distance functions, the training process associated with 
learning machines can become immense. Thus, the feature 
explosion that occurs with N-grams for large values of N 
needs to be addressed. 
 
Anti-virus vendors are facing huge quantities (thousands) of 
suspicious files everyday. These files are collected from 
various sources including dedicated honeypots, third party 
providers and files reported by customers either 
automatically or explicitly. The large amount of files makes 
efficient and effective inspection of files particularly 
challenging. 
 

Several analysis techniques for detecting malware, which 
commonly distinguished between dynamic and static, have 
been studied. In dynamic analysis (also known as behavioral 
analysis) the detection of malware consists of information 
that is collected from the operating system at runtime (i.e., 
during the execution of the program) such as system calls, 
network access and files and memory modifications. For 
large datasets, or costly (computation) distance functions, the 
training process associated with learning machines can 
become immense. Thus, the feature explosion that occurs 
with 
N-grams for large values of N needs to be addressed. 
 
This paper investigates approaches to filtering out irrelevant 
features and in Section 1, with a discussion on related 
research. In Section 2, related work is discussed. Overall 
system overview is discussed in Section 3. Section 4 how 
dataset is crate is discussed. SVM for classification is 
discussed in Section 5. Section 6 Proposed approach is 
discussed area of intersect, subspace analysis of eigenvalue 
and eigenvector. Conclusion is discussed in Section 7. 
 
2. Related Work 

 
Lakhotia et al. [1] presented a state machine method to 
detect obfuscated calls relating to push , pop and ret opcodes 
that are mapped to stack operations. However, their approach 
did not model situations where the push and pop instructions 
are decomposed into multiple instructions, such as directly 
manipulating the stack pointer using mov commands.  
 
Bilar [2] used static analysis to obtain opcode distributions 
from PE files that could be used to identify polymorphic and 
metaphoric malware. Bilar‟s findings show that many 
prevalent opcodes (mov, push, call, etc.) did not make good 
indicators of malware. However, lesser frequent opcodes 
such ja, adc, sub,inc and add proved to be better indicators 
of malware. In other research,  
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Bilar [3] compared the statically generated CFG of benign 
and malicious code. Their findings showed a difference in 
the basic block count for benign and malicious code. Bilar 
concluded that malicious code has a lower basic block count, 
implying a simpler structure: Less interaction, fewer 
branches and less functionality.  
 
N-grams are based on a signature approach that relies on 
small sequences of strings or byte codes that are used to 
detect malware. Santos et al. [4] demonstrated that n-gram 
signatures could be used to detect unknown malware. The 
experiment extracted code and text fragments from a large 
database of program executions to form signatures that are 
classified using machine learning methods.  
 
Asaf Shabtail, Robert Moskovitch,[5]Classification 
algorithms are employed for the detection of unknown 
malicious code. Byte n-gram patterns are used in to represent 
the inspected files. The inspected files are used as patterns 
for OpCode n-gram patterns which are extracted from the 
files after disassembly. The OpCode n-gram patterns are 
used as features for the classification process. The 
classification process main goal is to detect unknown 
malware within a set of suspected files and used in antivirus 
software as signatures. A problem of this domain is the 
imbalance problem in which the distribution of the classes 
varies. For detecting malware, dynamic and static anlysis is 
used. In dynamic the detection of malware consists of 
information that is collected from the operating system at 
runtime. In static, the information is collected from explicit 
and implicit observations in its binary/source code. 
Classification algorithms uses the binary code of a file (i.e., 
byte n-grams), and classifiers are used to learn patterns in the 
code in order to classify new (unknown) files as malicious or 
benign. Text categorization technique is used for Malware 
categorization which is based on OpCode n-gram patterns, 
generated by disassembling the inspected executable files, to 
represent the files. OpCode expressions, extracted from the 
executable file, are expected to provide a more meaningful 
representation of the code rather than byte sequence. Binary 
classifiers for the detection of unknown malicious code 
introduce the imbalance problem. The imbalance problem 
refers to scenarios in which the proportions of the classes are 
not equal. Imbalance problem leads to misclassification of 
datasets. 
 
Xu Chen, John Andersen, Z. Morley Mao[6] Malware is 
becoming more advanced.A detailed taxonomy of malware 
defender fingerprinting techniques should be developed.A 
novel fingerprinting method assistsmalware propagation, and 
creates an effective new techniqueto protect production 
systems.Systems should be divided as production systems 
and monitoring systems.Taxonomy is used to capture 
essential techniques fordistinguishing between productions 
and monitoring systems. A remote network based 
reconnaissance is used todifferentiate between VMs and real 
machines.A new paradigm is used for protecting production 
systemsmaking them appear to be monitoring systems. Both 
VMs and debuggers make hardware detectable changes 
when malware are present. Debuggers communicate with the 
rest of the system. The execution environment of a process is 
altered when it's running in a VM or under a debugger. 
 

R. Sekar,  Bendre D. , Dhurjati P., Bollineni.[7] Intrusion 
detection approach identifies anomalous sequences of system 
calls executed by programs. A natural way for learning 
sequences is to use a finite-state automaton (FSA). FSA-
learning is computationally expensive, and requires much 
space usage. The algorithm proposed in this project approach 
builds a compact FSA in a fully automatic and efficient, 
without requiring access to source code for programs. The 
space requirements are also reduced. The FSA uses only a 
constant time per system call during the learning as well as 
detection period. This leads to low overheads for intrusion 
detection. More accurate detection is performed. The training 
periods needed for our FSA based approach are shorter. 
Moreover, false positives rates are reduced. 
 
Clemens Kolbitsch, Paolo Milani Comparetti, Christopher 
Kruegel,[8]Host-based detection approaches suffer from 
ineffective detection models. Host-based detection models 
concentrate on the features of a specific malware instance, 
and are often easily evadable by obfuscation or 
polymorphism. In order to address the shortcomings of 
ineffective models, several dynamic detection approaches 
have been proposed that aim to identify the behavior 
exhibited by a malware family. These approaches are 
unfortunately too slowto be used as real-time detectors on 
the end host. In this project, a malware program is analyzed 
in a controlled environment to build a model that 
characterizes its behavior and also describe the information 
flows between the system calls essential to the malware‟s 
mission. The program slices are responsible for each 
information flows. For detection, these slices are matched 
against the runtime behavior of an unknown program. The 
behavior is then automatically translated into detection 
models that operate at the host level. Rapid detection and 
elimination of novel Malware is made. The developed fine-
grained model is used to monitor and observe the 
interactions of Malware with operating system. Using 
dynamic detection is much efficient compared to the 
conventional static model. 
 
Ulrich Bayer, Imam Habibi, Davide Balzarotti, Engin Kirda, 
[9]Malicious software (or malware) is one of the major 
security threats facing the Internet today. To develop 
effective malware countermeasures and mitigation 
techniques understanding of malware behavior is important. 
To detect the behavior of Malware, malicious code samples 
that were collected by Anubis. Anubis is a dynamic malware 
analysis platform that executes submitted binaries in a 
controlled environment. The analysis is performed by the 
system monitors by invocating the important Windows API 
calls and system services, it records the network traffic, and 
it tracks data flows. The reports are generated, while 
submitting the binaries. Anubis receives Malware samples 
through a public web interface and a number of feeds from 
security organizations and anti-malware companies. When 
compiling statistics about the behaviors of malicious code, 
certain Malware families make use of polymorphism. To 
address this problem, analysis of malware behavior are also 
based on malware families (clusters). The influence of code 
polymorphism on malware statistics is also addressed. 
Anubis submitters are categorized as following: large, 
medium, small, single. The behavioral information with 
respect to the number of malware families is approximated 
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as clusters of samples that exhibit similar behaviors. Several 
activities are performed to detect the behavior of Malware. 
Several Malware activities are detected using following 
activities. File system activity, Registry activity, Network 
activity, GUI windows, Botnet activity, and Sandbox 
detection. Each of the activities detects the common behavior 
and clusters it to detect the similar group. 
 
3. System Overview 
 

 
Figure1: System Overview 

 
The motivation for this research is to reduce the 
computational overhead required when N-gram analysis is 
performed on low-level fine grain data. Therefore, 
developing a lightweight filter that will reduce the number of 
features to be processed will in turn reduce the 
computational overhead; thus making the training phase of 
the SVM approach a viable solution for N-gram analysis 
where large feature sets are generated. Fig. 1 illustrates an 
overview of the experimental approach taken in this paper. 
The programs under investigation are run in a test 
environment with a debug tool monitoring the runtime 
opcodes. After completion, the data is parsed into opcode 
histograms and after some conditioning the dataset is passed 
to the SVM to construct a reference model. The reference 
model is constructed by configuring the SVM to perform an 
exhaustive search by traversing through all the features, 
searching for those opcodes that have a positive impact on 
the classification of benign and malicious software. To 
evaluate the various filtering algorithms, each filter processes 
the original dataset in an attempt to reproduce the same 
reference model produced by the SVM. 
 
 
 

4. Dataset Creation 
 
Operational Codes (Opcodes) are machine language 
instructions that perform CPU operations on operands such 
as arithmetic, memory/data manipulation, logical operations 
and program flow control. created a dataset of malicious and 
benign executables for the Windows operating system, the 
system most commonly used and attacked today. This 
malicious and benign file collection was previously used.  
Acquired some malicious files from the VX Heaven website. 
To identify the files, used the Kaspersky antivirus. Benign 
files, including executable and DLL (Dynamic Linked 
Library) files, were gathered from machines running the 
Windows XP operating system on our campus. The benign 
set contained some files. 
 
To ensure that Ollydbg tool correctly unpacked and ran the 
malware, samples were restricted to programs that ollydbg 
correctly identified as packed or encrypted. The malware 
samples were run for 3 minutes ensuring that not only the 
loading and unpacking phases were recorded but also that 
malicious activity occurred, i.e., pop-up, writing to the disk 
or registry files. While there are 344 Intel opcodes, only 149 
different opcodes are recorded during the captured datasets 
for all programs traced during this experiment. The dataset is 
normalized by calculating the percentage density of opcodes 
rather than the absolute opcode count to remove time 
variance introduced by different run lengths of the various 
programs. The dataset is sorted into most commonly 
occurring opcodes as illustrated in Fig. 2. An initial 
assessment of the data shows two key properties a) The 
distribution of the various opcodes does not conform to any 
consistent distribution shape; rather opcode distribution 
varies greatly as illustrated by the difference between the 
mov and ret opcodes, described later in VI: ‟Area of 
Intersect‟. Therefore, no one data shape could be assumed 
and hence a nonparametric method should be used. b) The 
data values are a percentage of the opcodes within a 
particular program. For example, 0 means that the opcode 
does not occur within that program trace or 0.25 means that 
25% of the program trace comprises of that opcode. To 
improve the performance of the SVM the data is linearly 
scaled. 

 

 
 

Figure 2: OPcode Percentage 
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5. Support Vector Machine 
 
SVM classifiers consist of a hyperplane dividing a n 
dimensional space based representation of the data into two 
regions. This hyperplane is the one that maximizes the 
margin between the two regions or classes (in our case, 
malware or benign software). Maximal margin is defined by 
the largest distance between the examples of the two classes 
computed from the distance between the closest instances of 
both classes (called supporting vectors machine).Support 
Vector Machine (SVM) is a technique used for data 
classification and was introduced by Boser et al. in 1992 
[10]and is categorized as a kernel method. The kernel 
method algorithm depends on dot-products function, which 
can be replaced by other kernel functions that map the data 
into a higher dimensional feature space. 
 
This has two advantages: Firstly, the ability to generate a 
nonlinear decision plane and secondly, allows theuser to 
apply a classification to data that does not have an intuitive 
approach i.e., SVM training when the data has a 
nonregularor unknown distribution.  
 
The dataset consists of 149 different opcodes, each having 
their own unique distribution characteristics and therefore a 
SVM is an appropriate choice. As mentioned earlier, the data 
is linearly scaled to improve the performance of the SVM. 
The main advantages of scaling are it avoids attributes with 
greater numeric ranges dominating those with smaller 
numeric ranges and it avoids numerical difficulties during 
the calculation as kernel values usually depend on the inner 
products of feature vectors, e.g., in the case of the linear 
kernel and the polynomial kernel, large attribute values 
might cause numerical problems. SVM is used to create a 
reference model to validate the filter experiments that are 
presented in the subsequence sections. The SVM is 
configured to traverse through the dataset searching for 
opcodes that have a positive impact on the classification of 
benign and malicious software. The search starts with six 
opcodes scanning across the complete data sequence for all 
unique permutations for that number of opcodes. The search 
is repeated for five opcodes and then four opcodes. An 
average of these results is sorted by most occurrences as 
illustrated in Fig. 3, which show the most important opcodes 
as chosen by the SVM. Only unique opcodes are selected for 
eachSVM classification test and no duplicates of repeated 
opcode patterns are processed. 

 
Figure 3: SVM OPcode Sensitvity 

 
6. Reduction  Approach 
 
N-gram analysis presents a dimensionality problem in terms 
of the number of raw features produced and if left unfiltered 
would result in a high computation cost during the SVM 
training phase. To reduce this effort and narrow the area of 
search, this research aims to identify filters that can select the 
optimum features prior to feeding them to a SVM. The 
hypothesis is: Malware that employs evasion techniques will 
exhibit telltale signs in terms of run-time opcodes; such as a 
higher density of instructions that are commonly used in 
malware to evade detection and carry out malicious activity. 
Therefore filtering out less relevant opcodes and allowing the 
SVM to focus on a subset will result in a fast training phase. 
This section investigates two approaches to filtering 
irrelevant opcodes. Starting with an investigation into the 
‟area of intersect‟ between benign and malicious 
distributions using Linear programming techniques and then 
concludes with an investigation into subspace analysis using 
Principle Component Analysis (PCA) and Eigenvectors. 
 
6.1. Area of Intersect 

 
Consider the simplistic characteristics of benign and 
malicious opcodes with a normal distribution as shown in 
Fig. 4. The plots are grouped into density curves for benign 
and malicious software of a single opcode. The horizontal 
axis relates to the percentage of a given program that is made 
up of a particular opcode and the vertical axis indicates the 
number of programs with that percentage of opcode. The key 
feature to note is the overlapping area of the two density 
curves. The greater the difference between the mean of the 
curves and narrower the standard deviation reduces the 
overlapping area and therefore reduces the interference and 
corresponding misclassification of the benign and malicious 
software. This implies that a simple analysis of low order 
statistics, such as calculating the product of the mean and the 
inverse of the standard deviation to determine the 
overlapping area might yield the best indicators (opcodes) of 
benign and malicious software. Hence, calculating the 
overlapping area for the density curves provides a numerical 
value and is shown in Fig. 4. These results need to be placed 
in a context that provides meaning in term of relative 
importance. Those opcodes chosen by the SVM as the 
reference model are highlighted. 
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Figure 4: Area of Intersect 

 
It can be seen that the opcodes with the least area of intersect 
correlate in part to the reference model. While this approach 
removes 75% of opcodes that provide no values an important 
opcode (adc) is removed therefore the ‟area of intersect‟ 
cannot be considered a useful tool for removing irrelevant 
opcodes. The SVM selected: ja, adc, sub, inc, rep and add as 
the reference model and as adc is filtered out by the ‟area of 
intersect‟ filter, which contradicts the hypothesis that 
opcodes with the least area of intersect make the best 
indicator of benign and malicious software. Two further 
points need to be considered. Firstly, the overall density of a 
particular opcode needs to be considered in the context of 
their area of intersect and its population as it needs to be 
significantly important to be considered as an indicator of 
benign and malicious software. Taking ja and rep opcodes 
(SVM selected range) as reference points, it can see from the 
data presented in Table II that the other opcodes relating to 
population and area of intersect fall within the characteristics 
of ja and rep. Therefore the area of intersect does not tell the 
full story as many other opcodes such as ret, call, etc. have 
lower area of intersect than ja and a population that lays 
between both rep and ja. In addition the „area intersect‟ filter 
removes the adc opcode. Low dimensional analysis does not 
consider covariance i.e., the relationship between the 
distributions of one opcode with that of another opcode. As 
shown in Fig. 4, it is not always the case that opcodes with a 
low area of intersect produce the best indicators of benign 
and malicious software. This requires a closer inspection of 
the opcode distribution curve to understand the 
characteristics that make the best indicators chosen by the 
SVM over the other opcodes that have similar area of 
intersect and population. Therefore further investigation is 
required and is carried out using Linear Programming (LP) 
to understand how the area under each curve is interpreted 
when a decision plane is applied. Linear programming is a 
technique that is applied to optimize a linear function when 
subject to linear equality and inequality constraints. LP can 
be applied to the classification of benign and malicious 
software.  The data is in the form of a probability density 
curve. The horizontal axis represents the makeup of a 
program i.e., the opcode percentage that makes up a program 
and the vertical axis, representing the number of programs 
that have that percentage of opcodes. The probability density 
is based on a percentage of opcode counts obtained from 
traces during the execution of a program. The minimum 
value is 0 and the maximum is the percentage of the most 

occurring opcode within the captured dataset (mov). Thus the 
maximum value is 0.4 (40%). 
 
6.2 Subspace 

 

An alternative approach to determine the importance of the 
individual opcodes, thereby ranking their usefulness as 
classification features, is to investigate the eigenvalues and 
eigenvectors in subspace. Principal Component Analysis 
(PCA) [11] is a transformation of the covariance matrix and 
it is defined as this is a technique used to compress data by 
mapping the data into a subspace while retaining most of the 
information/ variation in the data. It reduces the 
dimensionality by mapping the data into a subspace and 
finding a new set of variables (fewer variables) that represent 
the original data. These new variables are called principal 
components (PCs) and are uncorrelated and are ordered by 
their contribution (usefulness/eigenvalue) to the total 
information that each contain. 
 
7. Conclusion 

 
This paper is study of area intersecting to using of SVM 
training phase as a means of identifying malware. It shows 
that malware, that is packed/encrypted, can be detected using 
SVMs and by using the opcodes chosen by the SVM as a 
benchmark, determined a prefilter stage using eigenvectors 
that can reduce the feature set and therefore reduce the 
training effort. In this study first the identification of a high 
population opcode: mov that is not only is a poor indicator of 
benign/malicious software,but inhibits the ability to correctly 
classify software when usedit other opcodes such as ja, adc, 
sub, inc, add and rep. Secondly, a subset of opcodes can be 
used to detect malware. However, the SVM analysis 
demonstrates that ja, adc and sub are strong indicators of 
malware as they are four times more likely to be used in the 
correct classification of malware than the next most 
significant opcodes (inc). Several opcodes have been 
identified as potential indicators of malware. Finally, using 
the principal component analysis of calculating  eigenvector 
and eigenvalue  from the dataset can safely remove irrelevant 
features. 
 
 
 
 
 

Paper ID: NOV151981 478



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 

Volume 4 Issue 12, December 2015 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

References 
 
[1] A. Lakhotia, E. U. Kumar, and M. Venable, “A method 

for detecting obfuscated calls in malicious binaries,” 
IEEE Trans. Software Eng., vol. 31, no. 11, pp. 955–
968, Nov. 2005. 

[2] D. Bilar, “Opcodes as predictor for malware,” Int. J. 
Electron. Security Digital Forensics, vol. 1, no. 2, pp. 
156–168, 2007. 

[3] D. Bilar, “Callgraph properties of executables and 
generative mechanisms,” AI Commun., Special Issue on 
Network Anal. in Natural Sci.and Eng., vol. 20, no. 4, 
pp. 231–243, 2007. 

[4] I. Santos, Y. K. Penya, J. Devesa, and P. G. Garcia, “N-
grams-based file signatures for malware detection,” 
S3Lab, Deusto TechnologicalFound., 2009 

[5] A. Shabtai, R. Moskovitch, C. Feher, S. Dolev, and Y. 
Elovici, “Detecting unknown malicious code by 
applying classification techniques on opcode patterns,” 
Security Informatics, vol. 1, pp. 1–22, 2012. 

[6] X. Chen, “Towards an understanding of anti-
virtualization and antidebugging behavior in modern 
malware,” ICDSN Proc., pp. 177–186, 2008. 

[7] R. Sekar, M. Bendre, D. Bollineni, and Bollineni, R. 
Needham and M. Abadi, Eds., “A fast automaton-based 
method for detecting anomalous program behaviors,” in 
Proc. 2001 IEEE Symp. Security and Privacy,IEEE 
Comput. Soc., Los Alamitos, CA, USA, 2001, pp. 144–
155. 

[8] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X. 
Zhou, and X. Wang, “Effective and efficient malware 
detection at the end host,” in Proc. 18th Usenix Security 
Symp., 2009, pp. 351–366. 

[9] U. Bayer, I. Habibi, D. Balzarotti, E. Kirda, and C. 
Kruegel, “A view on current malware behaviors,” in 
Proc. 2nd USENIX Conf. on Large-Scale Exploits and 
Emergent Threats: Botnets, Spyware, Worms, andMore. 
USENIX Association, Berkeley, CA, USA, 2009. 

[10] B. E. Bernhard, G. M. Isabelle, and V. N. Vladimir, H. 
Haussler, Ed., “A training algorithm for optimal margin 
classifiers,” in Proc. 5th Ann.ACM Workshop on COLT 
ACM Press, Pittsburgh, PA, USA, 1992, pp. 144–152. 

[11] B. Schölkopf, A. Smola, and K.-R. Müller, “Kernel 
principal component analysis,” Artificial Neural 
Networks—ICANN’97 Lecture Notesin Comput. Sci., 
vol. 1327, pp. :583–588, 1997. 

Paper ID: NOV151981 479




