Development of the Functional Food i.e. Beetroot Fortified Multi Grain Snacks

K. B. Dhadage¹, G. S. Shinde², R. K. Gadhav³

Shramshakti College of Food Technology, (Affiliated to Mahatma Phule Krishi Vidyapeeth, Rahuri), Maldad - 422 608, A” Nagar, India

Abstract: Beetroot fortified multigrain snacks was prepared from different proportions of refined wheat flour (Maida), wheat flour defatted soya flour and standardized with beetroot i.e. (A₁) 40:20:10:30 (refined wheat flour(Maida) : wheat flour : defatted soya flour : beetroot paste), (A₂) 40:25:05:30 (refined wheat flour(Maida) : wheat flour : defatted soya flour : beetroot paste) and (A₃) 40:30:30 (refined wheat flour(Maida) : wheat flour : defatted soya flour : beetroot paste). The overall acceptability of beetroot fortified multigrain snacks of treatments A₁, A₂ and A₃ were 8.26, 8.51 and 7.88, respectively determined by sensory evaluation. It was observed that the beetroot fortified multigrain snacks prepared from 40 parts of refined wheat flour(Maida), 20 parts of wheat flour, 10 parts of defatted soya flour and 30 parts of beetroot paste was most acceptable and ranked between like very much to dislike very much. The beetroot fortified multigrain snacks of treatment A₃ was most acceptable. Beetroot is not only blessed with a beautiful colour but also packed with nutrients. Beetroot contain different nutrients such as Vitamins, Minerals, Amino acids, Calories, Antioxidants, Anti-carcinogenic colour, Silica etc. Beets have long been known for its amazing health benefits for almost every part of the body such as, curing the anaemia, lowering high blood pressure or elevating low blood pressure, anti-cancer properties, and help to relieve chronic constipation, cholesterol lowering capabilities etc.

Keywords: Beetroot, defatted soya flour, Wheat flour, Refined wheat flour (Maida), Sensory evaluation

1. Introduction

The fact that many people now work outside their homes and are becoming more dependent on snack for the supply of part of their daily nutritional requirement. Most often snack food does not provide adequate nutrient quantities needed by the body (Omueti and Morton, 1996). This may be due to their composition or due to the production process they went through. Whatever is responsible for the poor nutritional content, it is necessary to ensure that every food consume by an individual contains required nutrient in adequate amount. There for necessary to produce highly acceptable snack with high nutritional quality that could be useful in nutritional programs to combat malnutrition and nutrient deficiency. As a product that is consumed on such wide scale, it would be important to enhance its nutritional value. Addition of vegetable protein such as textured vegetable protein could be one way of raising the nutritional value of the product by introducing more protein into it (Rosa et al., 2003).

Beetroot (Beta vulgaris L.) is crop belonging to the Chenopodiaceae family having, bright crimson colour. It is famous for its juice value and medicinal properties. Beetroot is a good tonic food for health (Boswell, 1967). These findings suggest that beetroot ingestion can be a useful means to prevent development and progression of cancer (Kapadia et al., 1996).

Today the beetroot is still championed as a universal panacea. One of the most controversial examples is the official position of the South African health minister on the treatment of AIDS. Dr MantoTshabalala-Msimang, health minister under Thabo Mbeki, had been nicknamed “Dr Beetroot” for promoting beets and other vegetables over antiretroviral AIDS medicines, which she considers toxic (Blandy, 2006). Beetroot is one of the original “super foods” (Kumar Y., 2011).

Beetroot contain the all nutrients per 100 gm such as, Carbohydrates (9.96g), Sugars (7.96g), Dietary fibre (2.0g), Fat (0.18g), Protein (1.68g), Vitamin A equiv. (2µg), Thiamine (Vit. B1) (0.031mg), Riboflavin (Vit.B2) (0.027mg), Nicatin (Vit.B3) (0.331mg), Panthothenic acid (B5) (0.145mg), Vitamin B6 (0.067mg), Folate (Vit. B9) (80 µg), Vitamin C (3.6mg), Calcium (16mg), Iron (0.79mg), Magnesium (23mg), Phosphorus (38mg), Potassium (305mg), Zinc (0.35mg), Sodium (77mg)(USDA Nutrient database, 2015).

Soybean (Glycine max), is known as the “Golden Bean” of the 20th century. Soybean is one of the nature’s wonderful nutritional gifts (Liu, 1997). Soybeans have served as a major source of dietary protein for many people throughout Asia for over 1,000 years. Soybeans contain all the nine essential amino acids required for good nutrition, complete protein (40%), carbohydrate (18%), fat (18%) and moisture (9%) as well as vitamins and minerals (5%), including folic acid, calcium, potassium and iron. Soybean protein provides all the nine essential amino acids in the amounts needed for human health (Henkel, 2000; Federal Register, 1998). Fortification of cereals with soy will not only improve protein quantity but also improve the quality of food nutrients such as amino acid balance (National Soybean Research Laboratory, 2008).

In addition to soybeans supplying adequate protein to the diet, studies have shown that protein from soybeans may be beneficial to human health in other ways. A side form soy protein being low in saturated fat and cholesterol free; there may be many more advantages to consumption of soy in the diet (Drake et al., 2000 and 2001).

Research shows that, blending of soy flour with wheat flour will increase the recommended amino acid availability from 40% to 80% (Khan et al., 2005). In addition to nutritional improvements, soy fortified wheat flour will improve the functional characteristics of the end products in terms of

Volume 4 Issue 12, December 2015

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY
better moisture retention and less oil absorption. It has been recognized for some time now that consumption of plant proteins often results in significant lowering of low density lipoproteins and total cholesterol levels, which are associated risk factors for cardiovascular disease (Friedman and Brandon, 2001; Krummel, 1996). Consumption of soybeans and foods made from them are increasing because of their desirable nutritional value. Effects of high and low isoflavone-containing foods on lipid and non-lipid risk factors for coronary artery disease were investigated (Massey et al., 2001).

Wheat is the most important stable food crop for more than one third of the world population and contributes more calories and proteins to the world diet than any other cereal crops (Alan, 2000). Wheat is considered a good source of protein, minerals, B-group vitamins and dietary fiber although the environmental conditions can affect nutritional composition of wheat grains with its essential coating of bran, vitamins and minerals; it is an excellent health-building food (Topping, 2007). Luteinize the predominant carotenoids present in wheat and the bran germ fractions of wheat contained greater amounts of carotenoids and antioxidant activity than the endosperm fractions. Lutein, along with zeaxanthin, is important for the health of skin and eyes in humans (White PJ et al., 2005).

The latest edition of the USDA’s Dietary Guidelines for Americans clearly states that all adults should eat at least three servings of whole grains every day. It helps in preventing both heart diseases and cancer, therefore, lower death rates. The protection against heart disease may stem from whole grains, antioxidants, vitamins and photochemical, fiber or trace minerals. Apparently, by improving insulin sensitivity and decreasing the disordered insulin function people experience with metabolic syndrome, whole grains help prevent diabetes. The same substances in whole grains that protect against heart disease also seem to help prevent several kinds of cancer. Fiber and certain starches in whole grains ferment in the colon and form substances that may block the cancer-promoting effects of bile acids. Moreover, scientists believe that other substances in whole grains may affect hormone levels and possibly lower the risk of hormone-related cancers like breast cancer (Jacobs et al., 1998).

Maida or refine wheat flour is the “heart” of the ingredients in making of the multifarious baked goods globally (Ankur Rohilla et al., 2012).

2. Materials and Methods

The raw materials used for preparation of beetroot snacks was Beetroot (*Beta vulgaris L*), Defatted Soy flour (*Glycine max*), Wheat flour (*Triticum durum*), Refined wheat flour (*Triticum aestivum*), Ajwain (*Trachyspermum ammi*), Ginger (*Zingiber officinale*), Garlic (*Allium sativum*), Cumin seed (*Cuminum cyminum*), oil and other spices purchased from local market of Sangamner, Dist- Ahmednagar. The snacks were fortified with beetroot and multigrain flours. The physico-chemical properties of final product were determined in Food Chemistry and Nutrition laboratory of Shramshakti college of Food Technology, Maldad.

Product treatments: The defatted soy flour, wheat flour, refined wheat flour (Maida) and beetroot paste were as follows.

- A1: 40 part of refined wheat flour (Maida) + 20 part of wheat flour + 10 parts of defatted soy flour + 30 parts of beetroot paste.
- A2: 40 part of refined wheat flour (Maida) + 25 part of wheat flour + 05 parts of defatted soy flour + 10 parts of beetroot paste.
- A3: 40 part of refined wheat flour (Maida) + 30 part of wheat flour + 30 parts of beetroot paste.

3. Preparation of Beetroot Fortified Multigrain Snacks

![Flow sheet of preparation of beetroot fortified multigrain snacks](image)

4. Results and Discussion

Sensory evaluation: The sensory quality of product was evaluated by a panel of 10 judges selected from the staff of Department of Food Science and Technology, Food Chemistry and Nutrition, Food Engineering and Food Microbiology of Shramshakti College of Food Technology, Maldad, using 9 point Hedonic scale as described by Ranganna (1999).
Sensory evaluation of beetroot chips:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Sample</th>
<th>Colour</th>
<th>Taste</th>
<th>Texture</th>
<th>After taste</th>
<th>Overall acceptability</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sample-1</td>
<td>8.5</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>8.8</td>
<td>8.86</td>
</tr>
<tr>
<td></td>
<td>(40:20:10:30)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Sample-2</td>
<td>8.0</td>
<td>8.5</td>
<td>8.5</td>
<td>8.0</td>
<td>8.2</td>
<td>8.24</td>
</tr>
<tr>
<td></td>
<td>(40:25:05:30)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Sample-3</td>
<td>7.0</td>
<td>7.5</td>
<td>8.0</td>
<td>8.0</td>
<td>7.6</td>
<td>7.62</td>
</tr>
<tr>
<td></td>
<td>(40:30:30)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The beetroot snacks fortified with different proportion of different flours were subjected to sensory evaluation for overall acceptability i.e. colour, texture appearance, flavour, by trained judges, through 9 point hedonic scale. It was observed from Table that the sample-1 got high sensorial score (8.8) for all parameters like colour (8.5), taste (9.0), flavour (9.0), after taste (9.0) and overall acceptability (8.8) than other samples. In this sample, 40 part of refined wheat flour (Maida) + 20 part of wheat flour +10 parts of defatted soy flour +30 parts of beetroot paste used. The selected sample was further taken for large scale production and analysis.

Physico-chemical evaluation:

1. Moisture content: The crispiness of beetroot fortified multigrain snacks will be determined by moisture content.

\[
\% \text{ Moisture} = \frac{\text{Initial weight} - \text{Final weight}}{\text{Weight of sample}} \times 100
\]

(Ranganna, 1999)

2. Protein: The protein will be carried out by micro Kjeldhal method.

\[
\% \text{ Nitrogen} = \frac{(\text{sample} - \text{blank}) \times \text{N of H} \times 0.014 \times 25}{\text{Aliquot taken} \times \text{Weight of sample taken for distillation (g)}} \times 100
\]

\% Protein = \% nitrogen \times 6.25

(Where as 6.25 is conversion factor)

(Ranganna, 1999)

3. Fat: Fat content in terms of free lipids/ petroleum ether extractable lipid will be estimated using Soxhelt apparatus.

\[
\% \text{ Fat} = \frac{\text{Weight of sample with oil (W2)} - \text{Weight of empty round bottom flask (W1)}}{\text{Weight of sample}} \times 100
\]

(Ranganna, 1999)

4. Carbohydrate: Carbohydrate will be determined by different total soluble sugar present in the beetroot fortified multigrain snacks by using phenol sulphuric acid method.

\[
\% \text{ Carbohydrate} = \frac{\text{Sugar value from graph (mg)}}{\text{Allot sample used (0.1 or 0.2 ml)}} \times \frac{\text{Total Vol. of extract (100ml)}}{\text{Weight of sample (100mg)}} \times 1000
\]

(Thimmaiah, 2012)

5. Ash content: Ash will be determined by different minerals contents present in the snacks.

\[
\% \text{ Ash} = \frac{\text{Weight of crucible}-\text{Weight of empty crucible}}{\text{Weight of sample}} \times 100
\]

(Ranganna, 1999)

6. Crude fibre: Crude fibre of beetroot chips will be determined by alkali treatment method.

\[
\% \text{ Crude fibre} = \frac{\text{On ignition}}{\text{Weight of sample (gm)}} \times 100
\]

(Thimmaiah, 2012)
From the present study the following conclusion have been

- Beetroot fortified multigrain snacks confirms that the presence of large amount of protein (36.25%), carbohydrate, dietary fibre etc. The chemical analysis of beetroot fortified multigrain snacks having balanced nutritional value of different nutrients such as protein, carbohydrate, dietary fibre etc. The chemical analysis of beetroot fortified multigrain snacks confirms that the presence of large amount of protein (36.25%), carbohydrate, dietary fibre etc.

5. Conclusion

Beetroot fortified multigrain snacks having balanced nutritional value of different nutrients such as protein, carbohydrate, dietary fibre etc. The chemical analysis of beetroot fortified multigrain snacks confirms that the presence of large amount of protein (36.25%), carbohydrate, dietary fibre etc.

- For the fortification of beetroot and multigrain flour, the chemical compositions of beetroot fortified multigrain snack were increased.
- To prepare a beetroot fortified multigrain snacks having high economical or market value.
- The development of value added product with the fortification of beetroot and multigrain flours.

From the present study the following conclusion have been drawn:

- Beetroot fortified multigrain snacks were economically available rich source of protein, carbohydrate.
- For the fortification of beetroot and multigrain flour, the chemical compositions of beetroot fortified multigrain snack were increased.
- To prepare a beetroot fortified multigrain snacks having high economical or market value.
- The development of value added product with the fortification of beetroot and multigrain flours.

References

National Soybean Research Laboratory, 2008.

USDA Nutrient database, 2015.

Author Profile

Miss. Kalyani Dhadage is student in Shramshakti College of Food Technology, Maldad Tal Sangamner. She is B. Tech (Food Technology) and is specialized in Food Technology. He has 4 popular article in his name and has done 1 radio talk.

Mr. Ganesh Subhash Shinde is Assistant Professor in Shramshakti College of Food Technology, Maldad Tal Sangamner. He is PG-AFBM (Agriculture & Food Business Management) and is specialized in Food & Agriculture Marketing. He has 4 popular article in his name and has done 1 radio talk.

Mr. Ram Kaduji Gadhave is Assistant Professor in Shramshakti College of Food Technology, Maldad Tal Sangamner. He is M. Tech (Food Technology) and is specialized in Food Engineering & Technology.