
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Big Data Hadoop: Aggregation Techniques

Vidya Pol

Department of Computer Engineering, KJ College of Engineering Management & Research, Savitribai Phule University, Pune, India

Abstract: The term ‘Big Data’, refers to data sets whose size (volume), complexity (variability), and rate of growth (velocity) make them
difficult to capture, manage, process or analyzed. To analyze this enormous amount of data Hadoop can be used. However, processing is
often time-consuming. One way to decrease response time is to executing the job partially, where an approximate, early result becomes
available to the user, before completion of job. The implementation of the technique will be on top of Hadoop which will help to sample
HDFS blocks uniformly. We will evaluate this technique using real-world datasets and applications and we will try to demonstrate the
system’s performance in terms of accuracy and time. The objective of the proposed technique is to significantly improve the performance
of Hadoop MapReduce for efficient Big Data processing.

Keywords: privacy preservation, security, e-healthcare systems, data mining, image feature extraction.

1. Introduction

Big data is a term that refers to data sets or combinations of
data sets whose size (volume), complexity (variability), and
rate of growth (velocity) make them difficult to be captured,
managed, processed or analyzed by conventional
technologies and tools, such as relational databases. Hadoop
MapReduce programming model is being used for processing
Big Data, which consists of data processing functions: Map
and Reduce. Parallel Map tasks are run on input data which is
partitioned into fixed sized blocks and produce intermediate
output as a collection of <key, value> pairs. These pairs are
shuffled across different reduce tasks based on <key, value>
pairs. Each Reduce task accepts only one key at a time and
process data for that key and outputs the results as <key,
value> pairs. The Hadoop MapReduce architecture consists
of one JobTracker (Master) and many TaskTrackers
(Workers). The MapReduce Online is a modified version of
Hadoop MapReduce which supports Online Aggregation and
reduces response time. Traditional Map Reduce
implementations materialize the intermediate results of
mapper and do not allow pipelining between the map and the
reduce phases. This approach has the advantage of simple
recovery in the case of failures, however, reducers cannot
start executing tasks before all mapper have finished. This
limitation lowers resource utilization and leads to inefficient
execution for many applications. The main motivation of
Map Reduce Online is to overcome these problems, by
allowing pipelining between operators, while preserving

Fault tolerance guarantees. Redis is an open-source,
networked, in-memory, key-value data store with optional
durability. It is written in ANSI C.

The name Redis means REmote DIctionary Server. In its
outer layer, the Redis data model is a dictionary which maps
keys to values. One of the main differences between Redis
and other structured storage systems is that Redis supports
not only strings, but also abstract data types like lists of
strings, sets of strings (collections of non-repeating unsorted
elements), sorted sets of strings (collections of non-repeating
elements ordered by a floating-point number called score),
hashes where keys and values are strings. The type of a value
determines what operations (called commands) are available
for the value itself. Redis supports high-level, atomic, server-

side operations like intersection, union, and difference
between sets and sorting of lists, sets and sorted sets. The
main goal of the project work is to implement Online
MapReduce and Redis on the top of the Hadoop, which will
improve the performance of Hadoop for efficient Big Data
processing.

2. Related Work

Most existing work focuses on MapReduce performance
improvement by optimizing its data transmission. Blancaetal
have investigated the question of whether optimizing
network usage can lead to better systemperformance and
found that high network utilization and low network
congestion should be achieved simultaneously for a job with
good performance. Palanisamyetal have presented Purlieus, a
MapReduce resourceallocation system, to enhance the
performance of MapReduce jobs in the cloud by locating
intermediatedata to the local machines or close-by physical
machines.This locality-awareness reduces network trafficin
the shuffle phase generated in the cloud data center.However,
little work has studied to optimize networkperformance of
the shuffle process that generates largeamounts of data traffic
in MapReduce jobs. A criticalfactor to the network
performance in the shuffle phaseis the intermediate data
partition. The default schemeadopted by Hadoop is hash-
based partition that would yield unbalanced loads among
reduce tasks due to itsunawareness of the data size associated
with each key.To overcome this shortcoming, Ibrahietal
havedeveloped a fairness-aware key partition approach that
keeps track of the distribution of intermediate
keys’frequencies, and guarantees a fair distribution among
reduce tasks. Meanwhile, Liya etal have designedan
algorithm to schedule operations based on the key
distribution of intermediate key/value pairs to improvethe
load balance. Larsetal have proposed and evaluated two
effective load balancing approaches to dataskew handling for
MapReduce-based entity resolution.Unfortunately, all above
work focuses on load balanceat reduce tasks, ignoring the
network traffic during the shuffle phase.In addition to data
partition, many efforts have been made on local aggregation,
in-mapper combining and in-network aggregation to reduce
network traffic withinMapReduce jobs. Condieetal have
introduced a combiner function that reduces the amount of
data tobe shuffled and merged to reduce tasks. Lin and Dyer

Paper ID: NOV151945 432

http://en.wikipedia.org/wiki/Open-source_software
http://en.wikipedia.org/wiki/In-memory_database
http://en.wikipedia.org/wiki/Key-value_data_store
http://en.wikipedia.org/wiki/Durability_%28database_systems%29
http://en.wikipedia.org/wiki/ANSI_C
http://en.wikipedia.org/wiki/Dictionary_%28data_structure%29
http://en.wikipedia.org/wiki/Structured_storage
http://en.wikipedia.org/wiki/String_%28computer_science%29
http://en.wikipedia.org/wiki/List_%28computing%29
http://en.wikipedia.org/wiki/Set_%28abstract_data_type%29
http://en.wikipedia.org/wiki/Floating-point_number
http://en.wikipedia.org/wiki/Hash_table

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

have proposed an in-mapper combining scheme byexploiting
the fact that mappers can preserve state across the processing
of multiple input key/value pairs and defer emission of
intermediate data until all input records have been processed.
Both proposals are constrainedto a single map task, ignoring
the data aggregation opportunities from multiple map tasks.
Costaetal have proposed a MapReduce-like system to
decrease the traffic by pushing aggregation from the edge
into thenetwork. However, it can be only applied to the
network topology with servers directly linked to other
servers,which is of limited practical use. Different from
existing work, we investigate network traffic reduction
within MapReduce jobs by jointly exploiting traffic-aware
intermediate data partition and data aggregation among
multiple map tasks

3. Proposed Work

The Map Reduce Online is a modified version of Hadoop
Map Reduce, a popular open-source implementation of the
Map Reduce programming model. It supportsOnline
Aggregation and stream processing, while also improving
utilization and reducing response time. Traditional Map
Reduce implementations materialize theintermediate results
of mappers and do not allow pipelining between the map and
thereduce phases. This approach has the advantage of simple
recovery in the case of failures, however, reducers cannot
start executing tasks before all mappers have finished.This
limitation lowers resource utilization and leads to inefficient
execution for manyapplications. The main motivation of Map
Reduce Online is to overcome theseproblems, by allowing
pipelining between operators, while preserving fault-
toleranceguarantees. Although MapReduce was originally
designed as a batch oriented system, it is often used for
interactive data analysis: a user submits a job to
extractinformation from a data set, and then waits to view the
results before proceedingwith the next step in the data
analysis process. This trend has accelerated with
thedevelopment of high-level query languages that are
executed as MapReduce jobs, suchas Hive, Pig. Traditional
MapReduce implementations provide a poor interface
forinteractive data analysis, because they do not emit any
output until the job has beenexecuted to completion In many
cases, an interactive user would prefer a quickand
dirtyapproximationover acorrectanswer that takes much
longer to compute. In the database literature, online
aggregation has been proposed to address this problem,but
the batch-oriented nature of traditional
MapReduceimplementations makes these techniques difficult
to apply.

4. Simulation Results

We first evaluate the performance gap between ourproposed
distributed algorithm and the optimal solutionobtained by
solving the MILP formulation. Due to thehigh computational
complexity of the MILP formulation,we consider small-scale
problem instances with 10 keysin this set of simulations.
Each key associated with randomdata size within [1-50].
There are 20 mappers, and2 reducers on a cluster of 20
machines. The parameter is set to 0.5. The distance between
any two machines israndomly chosen within [1-60].As
shown in Fig.1, the performance of our distributedalgorithm

is very close to the optimal solution. Althoughnetwork traffic
cost increases as the number of keysgrows for all algorithms,
the performance enhancementof our proposed algorithms to
the other two schemesbecomes larger. When the number of
keys is set to10, the default algorithm HNA has a cost of 5.0
× 104while optimal solution is only 2.7×104, with 46%
trafficreduction.We then consider large-scale problem
instances, andcompare the performance of our distributed
algorithmwith the other two schemes. We first describe a
defaultsimulation setting with a number of parameters,
andthen study the performance by changing one parameter
while fixing others.

Figure 1: Network traffic cost versus number of keys from 1

to 10

Figure 2: Network traffic cost versus different number of

keys

We consider a MapReduce job with100 keys and other
parameters are the same above.As shown in Fig. 3, the
network traffic cost shows asan increasing function of
number of keys from 1 to 100under all algorithms. In
particular, when the numberof keys is set to 100, the network
traffic of the HNAalgorithm is about 3.4×105, while the
traffic cost of ouralgorithm is only 1.7 ×105, with a reduction
of 50%. Incontrast to HRA and HNA, the curve of DA
increasesslowly because most map outputs are aggregated
andtraffic-aware partition chooses closer reduce tasks foreach
key/value pair, which are beneficial to networktraffic
reduction in the shuffle phase.We then study the performance
of three algorithmsunder different values of α in Fig. 4 by
changing itsvalue from 0.2 to 1.0. A small value of α
indicates alower aggregation efficiency for the intermediate
data.We observe that network traffic increases as the
growthof under both DA and HRA. In particular, when α is
0.2, DA achieves the lowest traffic cost of 1.1 × 105.On the

Paper ID: NOV151945 433

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

other hand, network traffic of HNA keeps stablebecause it
does not conduct data aggregation.The affect of available
aggregator number on networktraffic is investigated in Fig. 5.
We change aggregatornumber from 0 to 6, and observe that
DA alwaysoutperforms other two algorithms, and network
traffics

Figure 3: Network traffic cost versus data reduction ratio α

Figure 6: Network traffic cost versus number of map tasks

Figure 4: Network traffic cost versus number of aggregators.

.
Figure 5: Network traffic cost versus number of reduce tasks

Decrease under both HRA and DA. Especially, when
thenumber of aggregator is 6, network traffic of the
HRAalgorithm is 2.2×105, while of DA’s cost is only
1.5×105,with 26.7% improvement. That is because
aggregatorsare beneficial to intermediate data reduction in
the shuffleprocess. Similar with Fig. 4, the performance of
HNAshows as a horizontal line because it is not affected
byavailable aggregator number.We study the influence of
different number of maptasks by increasing the mapper
number from 0 to 60. Asshown in Fig. 5, we observe that DA
always achievesthe lowest traffic cost as we expected
because it jointlyoptimizes data partition and aggregation.
Moreover, asthe mapper number increases, network traffic of
allalgorithms increases.We shows the network traffic cost
under differentnumber of reduce tasks in Fig. 6. The number
of reducersis changed from 1 to 6. We observe that the
highestnetwork traffic is achieved when there is only one
reducetask under all algorithms. That is because all
key/valuepairs may be delivered to the only reducer that
locatesfar away, leading to a large amount of network
trafficdue to the many-to-one communication pattern. As
thenumber of reduce tasks increases, the network
trafficdecreases because more reduce tasks share the loadof
intermediate data. Especially, DA assigns key/valuepairs to
the closest reduce task, leading to least network traffic.

5. Conclusion

The proposed system is based on implementation of Online
Aggregation ofMapReduce in Hadoop for ancient big data
processing. Traditional Map Reduceimplementations
materialize the intermediate results of mappers and do not
allowpipelining between the map and the reduce phases. This
approach has the advantageof simple recovery in the case of
failures, however, reducers cannot start executing tasks
before all mappers have finished. As the Map Reduce Online
is a modeled version of Hadoop Map Reduce, it supports
Online Aggregation and stream processing,while also
improving utilization and reducing response time. The
limitation of traditional mapreduces lowers resource
utilization and leads to incident execution formany
applications. The main motivation of Map Reduce Online is
to overcome theseproblems, by allowing pipelining between
operators.

Paper ID: NOV151945 434

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

References

[1] S. Vikram Phaneendra & E. Madhusudhan Reddy Big
Data- solutions for RDBMSproblems- A survey In 12th
IEEE/IFIP Network Operations & Management
Symposium (NOMS 2010) (Osaka, Japan, Apr 1923
2013)

[2] Kiran kumara Reddi & Dnvsl Indira Di_erent Technique
to Transfer Big Data:survey IEEE Transactions on 52(8)
(Aug.2013) 2348 2355

[3] Jimmy Lin MapReduce Is Good Enough? The control
project. IEEE Computer32 (2013).

[4] Hongfei Li, Usage analysis for smart meter management
in Proc of 2011 IEEEConference.

[5] Daswin De Silva, XinghuoYu,DammindaAlahakoon,
and Grahame Holmes, A DataMining Framework for
Electricity Consumption Analysis From Meter Data
IEEETrans.on Ind. Informatics, vol. 7, no. 3.

[6] Yang Wang,, Qing Xia, Chongqing Kang, Secondary
Forecasting Based on Deviation Analysis for Short-Term
Load Forecasting IEEE Trans..on Power Systems,
vol.26, no.2.

[7] XindongWu, Vipin Kumar, J. Ross Quinlan, Joydeep
Ghosh, Qiang Yang, HiroshiMotoda , Geo_rey
J.McLachlan, Angus Ng, Bing Liu, Philip S. Yu, ZhiHua
Zhou,Michael Steinbach, David J. Hand, Dan Steinberg,
"Top 10 algorithms in data min-ing", KnowlInfSyst,
2008 14, pp. 1-37.

[8] Jiawei Han and MichelineKamber, Classification and
Prediction inData Mining:Concepts and Techniques 2nd
ed., San Francisco, CA The Morgan Kaufmann, 2006.

[9] http://www.nyiso.com/public/markets operations/market
data/load data/index.jsp

[10] Report from Pike research,
http://www.pikeresearch.com/research/smartgrid-
dataanalytics.

[11] National Climate Data Center [Online].
Available:http://www.ncdc.noaa.gov/oa/ncdc.html

Author Profile

Vidya Vasant Polispursuing her Masters of Engineering in the
Computer Networks, Computer Department, KJ Collegeof
Engineering Management & Research, and Savitribai Phule
University. She received Bachelor of Engineering degree
inInformationTechnology from University Of Pune, Pune, India.

Paper ID: NOV151945 435

http://www.nyiso.com/public/markets%20operations/market%20data/load%20data/index.jsp
http://www.nyiso.com/public/markets%20operations/market%20data/load%20data/index.jsp
http://www.pikeresearch.com/research/smartgrid-data
http://www.pikeresearch.com/research/smartgrid-data

