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Abstract: The term ‘Big Data’, refers to data sets whose size (volume), complexity (variability), and rate of growth (velocity) make them 
difficult to capture, manage, process or analyzed. To analyze this enormous amount of data Hadoop can be used. However, processing is 
often time-consuming. One way to decrease response time is to executing the job partially, where an approximate, early result becomes 
available to the user, before completion of job. The implementation of the technique will be on top of Hadoop which will help to sample 
HDFS blocks uniformly. We will evaluate this technique using real-world datasets and applications and we will try to demonstrate the 
system’s performance in terms of accuracy and time. The objective of the proposed technique is to significantly improve the performance 
of Hadoop MapReduce for efficient Big Data processing.  
 

Keywords: privacy preservation, security, e-healthcare systems, data mining, image feature extraction. 
 
1. Introduction 

 

Big data is a term that refers to data sets or combinations of 
data sets whose size (volume), complexity (variability), and 
rate of growth (velocity) make them difficult to be captured, 
managed, processed or analyzed by conventional 
technologies and tools, such as relational databases. Hadoop 
MapReduce programming model is being used for processing 
Big Data, which consists of data processing functions: Map 
and Reduce. Parallel Map tasks are run on input data which is 
partitioned into fixed sized blocks and produce intermediate 
output as a collection of <key, value> pairs. These pairs are 
shuffled across different reduce tasks based on <key, value> 
pairs. Each Reduce task accepts only one key at a time and 
process data for that key and outputs the results as <key, 
value> pairs. The Hadoop MapReduce architecture consists 
of one JobTracker (Master) and many TaskTrackers 
(Workers). The MapReduce Online is a modified version of 
Hadoop MapReduce which supports Online Aggregation and 
reduces response time. Traditional Map Reduce 
implementations materialize the intermediate results of 
mapper and do not allow pipelining between the map and the 
reduce phases. This approach has the advantage of simple 
recovery in the case of failures, however, reducers cannot 
start executing tasks before all mapper have finished. This 
limitation lowers resource utilization and leads to inefficient 
execution for many applications. The main motivation of 
Map Reduce Online is to overcome these problems, by 
allowing pipelining between operators, while preserving  
 
Fault tolerance guarantees. Redis is an open-source, 
networked, in-memory, key-value data store with optional 
durability. It is written in ANSI C.  
 
The name Redis means REmote DIctionary Server. In its 
outer layer, the Redis data model is a dictionary which maps 
keys to values. One of the main differences between Redis 
and other structured storage systems is that Redis supports 
not only strings, but also abstract data types like lists of 
strings, sets of strings (collections of non-repeating unsorted 
elements), sorted sets of strings (collections of non-repeating 
elements ordered by a floating-point number called score), 
hashes where keys and values are strings. The type of a value 
determines what operations (called commands) are available 
for the value itself. Redis supports high-level, atomic, server-

side operations like intersection, union, and difference 
between sets and sorting of lists, sets and sorted sets. The 
main goal of the project work is to implement Online 
MapReduce and Redis on the top of the Hadoop, which will 
improve the performance of Hadoop for efficient Big Data 
processing.  
 
2. Related Work 

 
Most existing work focuses on MapReduce performance 
improvement by optimizing its data transmission. Blancaetal 
have investigated the question of whether optimizing 
network usage can lead to better systemperformance and 
found that high network utilization and low network 
congestion should be achieved simultaneously for a job with 
good performance. Palanisamyetal have presented Purlieus, a 
MapReduce resourceallocation system, to enhance the 
performance of MapReduce jobs in the cloud by locating 
intermediatedata to the local machines or close-by physical 
machines.This locality-awareness reduces network trafficin 
the shuffle phase generated in the cloud data center.However, 
little work has studied to optimize networkperformance of 
the shuffle process that generates largeamounts of data traffic 
in MapReduce jobs. A criticalfactor to the network 
performance in the shuffle phaseis the intermediate data 
partition. The default schemeadopted by Hadoop is hash-
based partition that would yield unbalanced loads among 
reduce tasks due to itsunawareness of the data size associated 
with each key.To overcome this shortcoming, Ibrahietal 
havedeveloped a fairness-aware key partition approach that 
keeps track of the distribution of intermediate 
keys’frequencies, and guarantees a fair distribution among 
reduce tasks. Meanwhile, Liya etal have designedan 
algorithm to schedule operations based on the key 
distribution of intermediate key/value pairs to improvethe 
load balance. Larsetal have proposed and evaluated two 
effective load balancing approaches to dataskew handling for 
MapReduce-based entity resolution.Unfortunately, all above 
work focuses on load balanceat reduce tasks, ignoring the 
network traffic during the shuffle phase.In addition to data 
partition, many efforts have been made on local aggregation, 
in-mapper combining and in-network aggregation to reduce 
network traffic withinMapReduce jobs. Condieetal have 
introduced a combiner function that reduces the amount of 
data tobe shuffled and merged to reduce tasks. Lin and Dyer 
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have proposed an in-mapper combining scheme byexploiting 
the fact that mappers can preserve state across the processing 
of multiple input key/value pairs and defer emission of 
intermediate data until all input records have been processed. 
Both proposals are constrainedto a single map task, ignoring 
the data aggregation opportunities from multiple map tasks. 
Costaetal have proposed a MapReduce-like system to 
decrease the traffic by pushing aggregation from the edge 
into thenetwork. However, it can be only applied to the 
network topology with servers directly linked to other 
servers,which is of limited practical use. Different from 
existing work, we investigate network traffic reduction 
within MapReduce jobs by jointly exploiting traffic-aware 
intermediate data partition and data aggregation among 
multiple map tasks 

 
3. Proposed Work 
 
The Map Reduce Online is a modified version of Hadoop 
Map Reduce, a popular open-source implementation of the 
Map Reduce programming model. It supportsOnline 
Aggregation and stream processing, while also improving 
utilization and reducing response time. Traditional Map 
Reduce implementations materialize theintermediate results 
of mappers and do not allow pipelining between the map and 
thereduce phases. This approach has the advantage of simple 
recovery in the case of failures, however, reducers cannot 
start executing tasks before all mappers have finished.This 
limitation lowers resource utilization and leads to inefficient 
execution for manyapplications. The main motivation of Map 
Reduce Online is to overcome theseproblems, by allowing 
pipelining between operators, while preserving fault-
toleranceguarantees. Although MapReduce was originally 
designed as a batch oriented system, it is often used for 
interactive data analysis: a user submits a job to 
extractinformation from a data set, and then waits to view the 
results before proceedingwith the next step in the data 
analysis process. This trend has accelerated with 
thedevelopment of high-level query languages that are 
executed as MapReduce jobs, suchas Hive, Pig. Traditional 
MapReduce implementations provide a poor interface 
forinteractive data analysis, because they do not emit any 
output until the job has beenexecuted to completion In many 
cases, an interactive user would prefer a quickand 
dirtyapproximationover acorrectanswer that takes much 
longer to compute. In the database literature, online 
aggregation has been proposed to address this problem,but 
the batch-oriented nature of traditional 
MapReduceimplementations makes these techniques difficult 
to apply.   
 
4. Simulation Results 
 
We first evaluate the performance gap between ourproposed 
distributed algorithm and the optimal solutionobtained by 
solving the MILP formulation. Due to thehigh computational 
complexity of the MILP formulation,we consider small-scale 
problem instances with 10 keysin this set of simulations. 
Each key associated with randomdata size within [1-50]. 
There are 20 mappers, and2 reducers on a cluster of 20 
machines. The parameter is set to 0.5. The distance between 
any two machines israndomly chosen within [1-60].As 
shown in Fig.1, the performance of our distributedalgorithm 

is very close to the optimal solution. Althoughnetwork traffic 
cost increases as the number of keysgrows for all algorithms, 
the performance enhancementof our proposed algorithms to 
the other two schemesbecomes larger. When the number of 
keys is set to10, the default algorithm HNA has a cost of 5.0 
× 104while optimal solution is only 2.7×104, with 46% 
trafficreduction.We then consider large-scale problem 
instances, andcompare the performance of our distributed 
algorithmwith the other two schemes. We first describe a 
defaultsimulation setting with a number of parameters, 
andthen study the performance by changing one parameter 
while fixing others. 

 
Figure 1: Network traffic cost versus number of keys from 1 

to 10 

 
Figure 2: Network traffic cost versus different number of 

keys 
 
We consider a MapReduce job with100 keys and other 
parameters are the same above.As shown in Fig. 3, the 
network traffic cost shows asan increasing function of 
number of keys from 1 to 100under all algorithms. In 
particular, when the numberof keys is set to 100, the network 
traffic of the HNAalgorithm is about 3.4×105, while the 
traffic cost of ouralgorithm is only 1.7 ×105, with a reduction 
of 50%. Incontrast to HRA and HNA, the curve of DA 
increasesslowly because most map outputs are aggregated 
andtraffic-aware partition chooses closer reduce tasks foreach 
key/value pair, which are beneficial to networktraffic 
reduction in the shuffle phase.We then study the performance 
of three algorithmsunder different values of α in Fig. 4 by 
changing itsvalue from 0.2 to 1.0. A small value of α 
indicates alower aggregation efficiency for the intermediate 
data.We observe that network traffic increases as the 
growthof  under both DA and HRA. In particular, when α is 
0.2, DA achieves the lowest traffic cost of 1.1 × 105.On the 
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other hand, network traffic of HNA keeps stablebecause it 
does not conduct data aggregation.The affect of available 
aggregator number on networktraffic is investigated in Fig. 5. 
We change aggregatornumber from 0 to 6, and observe that 
DA alwaysoutperforms other two algorithms, and network 
traffics 

 
 
Figure 3: Network traffic cost versus data reduction ratio α 

 
Figure 6: Network traffic cost versus number of map tasks 

 
Figure 4: Network traffic cost versus number of aggregators. 

. 
Figure 5: Network traffic cost versus number of reduce tasks 
 
Decrease under both HRA and DA. Especially, when 
thenumber of aggregator is 6, network traffic of the 
HRAalgorithm is 2.2×105, while of DA’s cost is only 
1.5×105,with 26.7% improvement. That is because 
aggregatorsare beneficial to intermediate data reduction in 
the shuffleprocess. Similar with Fig. 4, the performance of 
HNAshows as a horizontal line because it is not affected 
byavailable aggregator number.We study the influence of 
different number of maptasks by increasing the mapper 
number from 0 to 60. Asshown in Fig. 5, we observe that DA 
always achievesthe lowest traffic cost as we expected 
because it jointlyoptimizes data partition and aggregation. 
Moreover, asthe mapper number increases, network traffic of 
allalgorithms increases.We shows the network traffic cost 
under differentnumber of reduce tasks in Fig. 6. The number 
of reducersis changed from 1 to 6. We observe that the 
highestnetwork traffic is achieved when there is only one 
reducetask under all algorithms. That is because all 
key/valuepairs may be delivered to the only reducer that 
locatesfar away, leading to a large amount of network 
trafficdue to the many-to-one communication pattern. As 
thenumber of reduce tasks increases, the network 
trafficdecreases because more reduce tasks share the loadof 
intermediate data. Especially, DA assigns key/valuepairs to 
the closest reduce task, leading to least network traffic. 
 
5. Conclusion 
 
The proposed system is based on implementation of Online 
Aggregation ofMapReduce in Hadoop for ancient big data 
processing. Traditional Map Reduceimplementations 
materialize the intermediate results of mappers and do not 
allowpipelining between the map and the reduce phases. This 
approach has the advantageof simple recovery in the case of 
failures, however, reducers cannot start executing tasks 
before all mappers have finished. As the Map Reduce Online 
is a modeled version of Hadoop Map Reduce, it supports 
Online Aggregation and stream processing,while also 
improving utilization and reducing response time. The 
limitation of traditional mapreduces lowers resource 
utilization and leads to incident execution formany 
applications. The main motivation of Map Reduce Online is 
to overcome theseproblems, by allowing pipelining between 
operators.  
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