
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Matrix Factorization Based Query Recommendation

Visak Paul
1
, Sreena Sreedhar

2

1M.Tech Student, Department of Computer Science and Engineering, Ilahia College of Engineering and Technology, Muvattupuzha,

Kerala, India

2Assistant Professor, Department of Information Technology, Ilahia College of Engineering and Technology, Muvattupuzha, Kerala, India

Abstract: Database exploration is always a tedious task for the person who lacks skill in writing complex SQL queries. In order to aid

such people, SQL recommendations are provided with the help of an interactive query recommendation system. The recommendations

will be based on the current query, queries previously submitted by the user and the queries submitted by other users to the system.

Based on this, the recommendation engine recommends the recommendation query to the user. The user can use this query as a

template to formulate the query he wanted or he can submit the same. The recommended query will be like the query the user may want

to write. The recommendation users the general concept of collaborative filtering method in which the recommendations will be based

on the relationships between the queries submitted and the interests of the user. The use matrix factorization further improves the

recommendation accuracy and thereby a better result for the user.

Keywords: recommender systems, matrix factorization, query recommendation, collaborative filtering

1. Introduction

Query Recommendation aims at suggesting sql queries to the
users who lack expertise in formulating sql queries. For
performing recommendations, a sql query recommendation
system is developed. The recommendation system
continuously monitors the users behavior of querying from
the database and make recommendations based on this.

Sql query recommender system's concept is based on a the
concept on web recommender systems. If users A and B have
posed similar queries, then the other queries of B may be of
interest to user A and vice versa. In other words,
recommending the queries of user B in order to help user A
in their exploration of the database. In particular, to
implement this idea through Collaborative Filtering, a well
known, mature technique that has been used in Web
recommender systems. However, the transfer of this
approach to the database context introduces several technical
challenges. First, SQL is a declarative language, and hence
syntactically different queries may reflect the same
information need. The recommended queries are relevant to
the user’s information needs and can be submitted directly or
be further refined. In other words, the user can use them as
“templates” for query formulation instead of having to
compose new ones

Recommender system addresses these challenges by
employing a closed-loop approach. Specifically, the
recommender system framework decomposes each query into
Basic elements that capture the essence of the query’s logic.
These elements are used to compute similarities between
users, as well as a signature of the user’s querying behavior
(and, to some extent of the user’s information needs).
Recommendations are generated by mining queries from the
system log that match well with the signature. Hence, the user
is presented with queries that match her querying behavior,
and are likely to be more intuitive than purely synthetic ones.

2. System Details

2.1 Recommender Systems

Recommender systems have become a vital tool for attracting
and keeping users on commercial websites. Their utility is
supported by research as well as common practice. The task
of a recommender system can be abstractly described as
follows. Consider a matrix in which rows correspond to users
and columns correspond to items. Each value in this matrix
represents a user’s revealed or stated preference (if any) for
an item: for example, whether he purchased a book, how
many times he listened to a song, or what rating he gave to a
movie. Because the item set is typically far larger than a
single user can consume and evaluate, this matrix is “sparse:”
only a small fraction of entries are filled in. A recommender
system takes this matrix as input, along with any available
metadata about users (such as demographics) and items (such
as item categories). The goal of the system is to extrapolate
users “true” preferences over the full item set.

Recommender systems can be classified as content-based,
collaborative and hybrid. Content-based systems identify
relationships between items based on metadata alone and
recommend items which are similar to the user’s past
transactions. Collaborative filtering identifies relationships
between items based on the preferences of all users.
Collaborative filtering is a method of making automatic
predictions (filtering) about the interests of a user by
collecting preferences or taste information from many users
(collaborating). The underlying assumption of the
collaborative filtering approach is that if a person A has the
same opinion as a person B on an issue, A is more likely to
have B’s opinion on a different issue x than to have the
opinion on x of a person chosen randomly.

Paper ID: NOV151879 169

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

2.2 Recommender Framework

Figure 1: Framework workflow

The abstract framework is essentially a workflow, as depicted
in Figure 1. The active user’s queries are forwarded to both
the DBMS and the Recommendation Engine. The DBMS
processes each query and returns a set of results. At the same
time, the query is stored in the Query Log. The
Recommendation Engine combines the current user’s input
with information gathered from the database interactions of
past users, as recorded in the Query Log, and generates a set
of query recommendations that are returned to the user.
Consider a setting where users explore a relational database
through a sequence of SQL queries. The goal of the
exploration is to discover interesting information or verify a
particular hypothesis. The queries are formulated based on
this goal and reflect the user’s overall information need. As a
consequence, the queries posted by a user during one “visit”
(commonly called session) to the database are typically
correlated, in that the user formulates the next query in the
sequence after having inspected the results of previous
queries.

Let assume that each user has a single session with the
database. This assumption can be lifted in a straightforward
manner at the expense of more complicated notation. Given a
user i, let Qi denote the set of SQL queries that the user has
posed so far in a single session. Introduced the notion of a
session summary to summarize the characteristics of the
queries posed in the session. This summary captures the parts
of the database accessed by the user and incorporates a
metric of importance for each part. Contrary to Web
recommender systems, where the users are represented by the
items they visit/rate/purchase, in the context of relational
databases, several ways to model the session summaries
exist. For instance, a crude summary may contain the names
of the relations that appear in the queries of the user, and the
importance of each relation can be measured as the number
of queries that reference it. On the other extreme, a detailed
summary may contain the actual results inspected by the user,
along with an explicit rating of each result tuple. In what
follows, use Si to represent the session summary for user i.

User i = 0 will always represent the current user (for whom
recommendations are generated), whereas i = 1,...,n
represents past users of the system. In a slight abuse of
notation, use Si to represent both the session summary and
user i. To generate recommendations for current user S0 , the
framework first computes a “predicted” summary Spred . This
summary captures the predicted degree of interest of S0 with
respect to different query characteristics, including those that
already appear in his/her queries, as well as new ones that
have not been used yet.

Overall, the framework consists of the following
components: (a) a model for session summaries, (b) a method
to compute the session summaries S0 ,...,Sn , (c) a method to
compute Spred, and (d) a method to select queries based on
Spred.

2.3 Tuple-Based Query Recommendations

In this instantiation of the framework [2], the session
summary Si is represented as a weighted vector, where every
coordinate corresponds to a distinct database tuple. Assume
that the total number of tuples in the database, and as a
consequence the length of the vector, is T. The weight Si[τ]
represents the importance of a given tuple τ ∈ T in session Si,
and is non-zero only if τ is a witness for at least one query in
the session. The intuition is that Si captures the tuples in the
base tables that are touched by the queries in the user’s
session. Hence, sessions that contain equivalent queries will
map to the same summary.

2.4 Fragment-Based Query Recommendations

The fragment-based instantiation of the recommender system
framework works in a similar manner to the tuple-based one
[1]. The two main differences lie in the representation of the
session summaries and the formulation of similarities. More
specifically, the coordinates of the session summaries
correspond to fragments of queries instead of witnesses.

Paper ID: NOV151879 170

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Identify as fragments the following syntactical features of the
queries in the session: attribute references, table’s references,
join and selection predicates. At a high level, the idea behind
this approach is to recommend queries whose syntactical
features match the queries of the current user.

3. Proposed System

3.1 Matrix Factorization Model

Matrix factorization models [4] map both users and items to
a joint latent factor space of dimensionality f, such that user-
item interactions are modeled as inner products in that space.
Accordingly, each item i is associated with a vector qi ∈ Rf ,
and each user u is associated with a vector p ∈ Rf . For a
given item i, the elements of qi measure the extent to which
the item possesses those factors, positive or negative. For a
given user u, the elements of pu measure the extent of interest
the user has in items that are high on the corresponding
factors, again, positive or negative. The resulting dot product,
qi

Tpu captures the interaction between user u and item i, the
user’s overall interest in the item’s characteristics. This
approximates user u’s rating of item i, which is denoted by
rui, leading to the estimate r = qi

Tpu. The major challenge is
computing the mapping of each item and user to factor
vectors qi, pi ∈ Rf. After the recommender system completes
this mapping, it can easily estimate the rating a user will give
to any item by using equation. Such a model is closely related
to singular value decomposition (SVD), a well-established
technique for identifying latent semantic factors in
information retrieval. Applying SVD in the collaborative
filtering domain requires factoring the user-item rating
matrix. This often raises difficulties due to the high portion
of missing values caused by sparseness in the user-item
ratings matrix. Conventional SVD is undefined when
knowledge about the matrix is incomplete. Moreover,
carelessly addressing only the relatively few known entries is
highly prone to overfitting. Earlier systems relied on
imputation to fill in missing ratings and make the rating
matrix dense. However, imputation can be very expensive as
it significantly increases the amount of data. In addition,
inaccurate imputation might distort the data considerably.
Hence, more recent works suggested modeling directly the
observed ratings only, while avoiding overfitting through a
regularized model. To learn the factor vectors (pu and qi), the
system minimizes the regularized squared error on the set of
known ratings parameters, whose magnitudes are penalized.

4. Proposed System

The fragment-based approach clearly captures information at
a coarser level of detail, and hence it is expected to miss
interesting correlations between users. For instance, two
distinct selection predicates will be mapped to different
fragments even if they are satisfied by the same tuples in the
base tables. It is therefore expected that the basic tuple-based
approach yields better results in terms of precision. This,
however, comes with a cost; the tuple-based approach
constructs large (and relatively dense) summaries and, most
importantly, requires real-time calculations of the similarities
between the session summary S0 of the current user and these

of past users. On the other hand, the big advantage of the
fragment-based approach is that it can be implemented very
efficiently; the space of fragments grows slowly allowing for
a scalable system, the summaries are very sparse enabling
faster similarity calculations and, most importantly, the
fragment-to-fragment similarities can be computed offline
and stored for very fast retrieval when recommendations
need to be generated, leveraging all the advantages of item-
to-item collaborative filtering. A comparable response time is
achieved when the tuple-based instantiation employs
MinHash synopses.

4.1 SQL Query Preprocessing

Because of the large and excessive amount of slightly
dissimilar queries existing in the query logs, in order to relax
them to increase their cardinality, and thus the probability of
finding similarities between different user sessions, query
preprocessing must done. The intuition is that if two users
query the same table and attributes, using slightly different
filtering conditions, the algorithm should consider them as
similar. In essence, all the WHERE clauses are relaxed by
converting the numerical data and string literals to generic
string representations. For example, all strings are replaced
by STR, all hexadecimal numbers by HEXNUM and all
decimals by NUM. A similar generalization is also followed
for lists or ranges of numbers and strings. The mathematical
and set comparators are also replaced by string equivalents,
for example “=” is replaced by EQU and “≤” by COMPARE.
Each distinct fragment is assigned a numerical identifier,
used in the query and session vector representation. For each
new fragment not previously recorded in the query log,
recommender system generates a new identifier. Such
updates occur in real-time, as the current user posts a query
including new fragments. In the case of the WHERE clause,
only the joins and the filter conditions are stored. Because of
the generalization, the fragments in the WHERE clause are
not differentiated based on their actual values, but rather
based on the attributes used for filtering.

4.2 Recommender System Prototype

A prototype of the proposed recommender system is
implemented that supports the recommendation engines using
Java and runs on top of a standard relational
DBMS(MySQL) to store the query logs and the similarities.
The database query interface module is built using JavaFX.
The recommendation engine module is also built using Java.
Once a user logs in the system, he is able to access the
database. The user can author and submit a SQL query.
Recommender system sends the request to the database, and
presents the user with the results. At the same time, the
system records the active user’s queries, creating an implicit
user profile. This user profile is used as input to the
algorithm, along with the predictive model to generate real-
time, personalized query recommendations. For each
recommended query, the user is able to examine a sample of
the results that will be retrieved, in order to decide whether it
addresses her needs, prior to actually submitting it to the
DBMS. Recommender system continuously monitors the
user’s querying behavior and finds matching patterns in the
system’s query log, in an attempt to identify previous users

Paper ID: NOV151879 171

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

with similar information needs. Subsequently, recommender
system uses these “similar” users and their queries to
recommend queries that the current user may find interesting.
In this recommender system framework, the active user’s
session is represented by a set of query fragments. The active
user’s queries are forwarded to both the DBMS and the
Recommendation Engine. The DBMS processes each query
and returns a set of results. At the same time, the query is
stored in the Query Log. The Recommendation Engine
combines the current user’s input with information gathered
from the database interactions of past users, as recorded in
the Query Log, and generates a set of query
recommendations that are returned to the user. The recorded
fragments are used to identify similar query fragments in the
previously recorded sessions, which are in turn assembled in
potentially interesting queries for the active user.

At all times, the active user is able to: (a) formulate a query
from scratch, (b) select a recommended query and submit it
as it is, or (c) select a recommended query and edit it before
submitting it to the database. Moreover, the interface allows
the user to browse the database schema, review and re-submit
queries that were posed during his recent history.

4.3 Singular Value Decomposition

In a collaborative filtering problem, the connections that do
not exist (user i has not rated item j, person x has not friended
person y) are generally treated as missing values to be
predicted, rather than as zeros. That is, if user i hasn’t rated

item j, we want to guess what he might rate it if he had rated
it. If person x hasn’t friended y, we want to guess how likely
it is that he’d want to friend him. The recommendations are
based on the reconstructed values. When taking the SVD of
the social graph (e.g., plug it through svd()), basically we are
inputing zeros in all those missing spots. That this is
problematic is more obvious in the user-item-rating setup for
collaborative filtering. If we had a way to reliably fill in the
missing entries, we wouldn’t need to use SVD at all. The
recommendations are given based on the filled in entries. If
we don’t have a way to do that, then we shouldn’t fill them
before we do the SVD. Let the matrix A be such that rows
are the users and the columns are the items that the user
likes.. One way to think of SVD is as follows: SVD finds a
hidden feature space where the users and items they like have
feature vectors that are closely aligned. So, when compute
 A = U × s × V , the U matrix represents the feature vectors,
corresponding to the users in the hidden feature space and the
V matrix represents the feature vectors corresponding to the
items in the hidden feature space. Now, if two vectors from
the same feature space and ask to find if they are similar, the
simplest thing that we can do for accomplishing that is Dot
product. So, if we want to see user i likes item j, all need to
do is take the dot product of the ith entry in U and jth entry in
V. Of course, dot product is by no means the only thing to
apply, we can use any similarity measure that is applicable.
Figure 2 shows the recommender system interface.

Figure 2: Recommender System Interface

Paper ID: NOV151879 172

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 12, December 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

5. Conclusion

In this paper, we proposed a recommender system framework
that aims to generate useful SQL query recommendations to
users of relational databases. By using our recommender
system, users can generate a set of recommendations for the
query he submitted and he can select a suitable sq query from
the recommendations. This reduces the time to formulate
such complex SQL queries and also helps the less
experienced users. The use of matrix factorization based
recommender system improves the recommendation.

References

[1] Magdalini Eirinaki, Suju Abraham, Neoklis Polyzotis,
Naushin Shaikh, “QueRIE: Collaborative Database
Exploration”, IEEE Trans. Knowl. Data Eng. 26(7):
1778-1790,2014

[2] G. Chatzopoulou, M. Eirinaki, and N. Polyzotis,
“Collaborative filtering for interactive database
exploration,” in Proc. of the 21st Intl. Conf. on
Scientific and Statistical Database Management
(SSDBM’09),2009.

[3] Shameem Ahamed Puthiya Parambath, “Matrix
Factorization Methods for Recommender Systems”,
Umea University, Sweden, 2013

[4] Yehuda Koren, Robert M. Bell, Chris Volinsky, “Matrix
Factorization Techniques for Recommender Systems.”
IEEE Computer, 42(8): 30-37, 2009

[5] Noam Koenigstein, Parikshit Ram, Yuval Shavitt,
“Efficient Retrieval of Recommendations in a Matrix
Factorization Framework”, CIKM'12, Proceedings of
the21st ACM international conference on information
and knowledge management, 535-544

[6] J. Akbarnejad, G. Chatzopoulou, M. Eirinaki, S. Koshy,
S. Mit-tal, D. On, N.Polyzotis, and J. S. V. Varman,
“SQL QueRIE Recommendations,” in Proc. of the 36th
Intl. Conf. on Very Large DataBases (VLDB 2010),
2010.

Author Profile

Visak Paul received the Bachelor of Technology
degree in Computer Science and Engineering from
Mahatma Gandhi University, Kerala in 2012. He is
currently doing Master of Technology degree in
Computer Science and Engineering with specialization

in Information Systems from Mahatma Gandhi University, Kerala.

Sreena Sreedhar is an Assistant Professor at the
Information Technology Department, Ilahia College of
Engineering and Technology, Muvattupuzha, Kerala.

Paper ID: NOV151879 173

