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Abstract: Database exploration is always a tedious task for the person who lacks skill in writing complex SQL queries. In order to aid 

such people, SQL recommendations are provided with the help of an interactive query recommendation system. The recommendations 

will be based on the current query, queries previously submitted by the user and the queries submitted by other users to the system. 

Based on this, the recommendation engine recommends the recommendation query to the user. The user can use this query as a 

template to formulate the query he wanted or he can submit the same. The recommended query will be like the query the user may want 

to write. The recommendation users the general concept of collaborative filtering method in which the recommendations will be based 

on the relationships between the queries submitted and the interests of the user. The use matrix factorization further improves the 

recommendation accuracy and thereby a better result for the user. 
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1. Introduction 
 
Query Recommendation aims at suggesting sql queries to the 
users who lack expertise in formulating sql queries. For 
performing recommendations, a sql query recommendation 
system is developed. The recommendation system 
continuously monitors the users behavior of querying from 
the database and make recommendations based on this.  
 
Sql query recommender system's concept is based on a the 
concept on web recommender systems. If users A and B have 
posed similar queries, then the other queries of B may be of 
interest to user A and vice versa. In other words, 
recommending the queries of user B in order to help user A 
in their exploration of the database. In particular, to 
implement this idea through Collaborative Filtering, a well 
known, mature technique that has been used in Web 
recommender systems. However, the transfer of this 
approach to the database context introduces several technical 
challenges. First, SQL is a declarative language, and hence 
syntactically different queries may reflect the same 
information need. The recommended queries are relevant to 
the user’s information needs and can be submitted directly or 
be further refined. In other words, the user can use them as 
“templates” for query formulation instead of having to 
compose new ones 
 
Recommender system addresses these challenges by 
employing a closed-loop approach. Specifically, the 
recommender system framework decomposes each query into 
Basic elements that capture the essence of the query’s logic. 
These elements are used to compute similarities between 
users, as well as a signature of the user’s querying behavior 
(and, to some extent of the user’s information needs). 
Recommendations are generated by mining queries from the 
system log that match well with the signature. Hence, the user 
is presented with queries that match her querying behavior, 
and are likely to be more intuitive than purely synthetic ones. 
 

2. System Details 
 
2.1   Recommender Systems 

 
Recommender systems have become a vital tool for attracting 
and keeping users on commercial websites. Their utility is 
supported by research as well as common practice. The task 
of a recommender system can be abstractly described as 
follows. Consider a matrix in which rows correspond to users 
and columns correspond to items. Each value in this matrix 
represents a user’s revealed or stated preference (if any) for 
an item: for example, whether he purchased a book, how 
many times he listened to a song, or what rating he gave to a 
movie. Because the item set is typically far larger than a 
single user can consume and evaluate, this matrix is “sparse:” 
only a small fraction of entries are filled in. A recommender 
system takes this matrix as input, along with any available 
metadata about users (such as demographics) and items (such 
as item categories). The goal of the system is to extrapolate 
users “true” preferences over the full item set. 

 
Recommender systems can be classified as content-based, 
collaborative and hybrid. Content-based systems identify 
relationships between items based on metadata alone and 
recommend items which are similar to the user’s past 
transactions. Collaborative filtering identifies relationships 
between items based on the preferences of all users. 
Collaborative filtering is a method of making automatic 
predictions (filtering) about the interests of a user by 
collecting preferences or taste information from many users 
(collaborating). The underlying assumption of the 
collaborative filtering approach is that if a person A has the 
same opinion as a person B on an issue, A is more likely to 
have B’s opinion on a different issue x than to have the 
opinion on x of a person chosen randomly.  
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2.2 Recommender Framework  

 
Figure 1: Framework workflow 

 
The abstract framework is essentially a workflow, as depicted 
in Figure 1. The active user’s queries are forwarded to both 
the DBMS and the Recommendation Engine. The DBMS 
processes each query and returns a set of results. At the same 
time, the query is stored in the Query Log. The 
Recommendation Engine combines the current user’s input 
with information gathered from the database interactions of 
past users, as recorded in the Query Log, and generates a set 
of query recommendations that are returned to the user. 
Consider a setting where users explore a relational database 
through a sequence of SQL queries. The goal of the 
exploration is to discover interesting information or verify a 
particular hypothesis. The queries are formulated based on 
this goal and reflect the user’s overall information need. As a 
consequence, the queries posted by a user during one “visit” 
(commonly called session) to the database are typically 
correlated, in that the user formulates the next query in the 
sequence after having inspected the results of previous 
queries.  

 
Let assume that each user has a single session with the 
database. This assumption can be lifted in a straightforward 
manner at the expense of more complicated notation. Given a 
user i, let Qi denote the set of SQL queries that the user has 
posed so far in a single session. Introduced the notion of a 
session summary to summarize the characteristics of the 
queries posed in the session. This summary captures the parts 
of the database accessed by the user and incorporates a 
metric of importance for each part. Contrary to Web 
recommender systems, where the users are represented by the 
items they visit/rate/purchase, in the context of relational 
databases, several ways to model the session summaries 
exist. For instance, a crude summary may contain the names 
of the relations that appear in the queries of the user, and the 
importance of each relation can be measured as the number 
of queries that reference it. On the other extreme, a detailed 
summary may contain the actual results inspected by the user, 
along with an explicit rating of each result tuple. In what 
follows, use Si to represent the session summary for user i. 

User i = 0 will always represent the current user (for whom 
recommendations are generated), whereas i = 1,...,n 
represents past users of the system. In a slight abuse of 
notation, use Si to represent both the session summary and 
user i. To generate recommendations for current user S0 , the 
framework first computes a “predicted” summary Spred . This 
summary captures the predicted degree of interest of S0 with 
respect to different query characteristics, including those that 
already appear in his/her queries, as well as new ones that 
have not been used yet. 

 
Overall, the framework consists of the following 
components: (a) a model for session summaries, (b) a method 
to compute the session summaries S0 ,...,Sn , (c) a method to 
compute Spred, and (d) a method to select queries based on 
Spred. 

 
2.3   Tuple-Based Query Recommendations 

 
In this instantiation of the framework [2], the session 
summary Si is represented as a weighted vector, where every 
coordinate corresponds to a distinct database tuple. Assume 
that the total number of tuples in the database, and as a 
consequence the length of the vector, is T. The weight Si[τ] 
represents the importance of a given tuple τ ∈ T in session Si, 
and is non-zero only if τ is a witness for at least one query in 
the session. The intuition is that Si captures the tuples in the 
base tables that are touched by the queries in the user’s 
session. Hence, sessions that contain equivalent queries will 
map to the same summary. 

 

2.4    Fragment-Based Query Recommendations 

 
The fragment-based instantiation of the recommender system 
framework works in a similar manner to the tuple-based one 
[1]. The two main differences lie in the representation of the 
session summaries and the formulation of similarities. More 
specifically, the coordinates of the session summaries 
correspond to fragments of queries instead of witnesses. 
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Identify as fragments the following syntactical features of the 
queries in the session: attribute references, table’s references, 
join and selection predicates. At a high level, the idea behind 
this approach is to recommend queries whose syntactical 
features match the queries of the current user. 

 
3. Proposed System 
 

3.1 Matrix Factorization Model 

 
Matrix factorization models [4] map both users and items to 
a joint latent factor space of dimensionality f, such that user-
item interactions are modeled as inner products in that space. 
Accordingly, each item i is associated with a vector qi ∈ Rf , 
and each user u is associated with a vector p ∈ Rf . For a 
given item i, the elements of qi measure the extent to which 
the item possesses those factors, positive or negative. For a 
given user u, the elements of pu measure the extent of interest 
the user has in items that are high on the corresponding 
factors, again, positive or negative. The resulting dot product, 
qi

Tpu captures the interaction between user u and item i, the 
user’s overall interest in the item’s characteristics. This 
approximates user u’s rating of item i, which is denoted by 
rui, leading to the estimate r = qi

Tpu. The major challenge is 
computing the mapping of each item and user to factor 
vectors qi, pi ∈ Rf. After the recommender system completes 
this mapping, it can easily estimate the rating a user will give 
to any item by using equation. Such a model is closely related 
to singular value decomposition (SVD), a well-established 
technique for identifying latent semantic factors in 
information retrieval. Applying SVD in the collaborative 
filtering domain requires factoring the user-item rating 
matrix. This often raises difficulties due to the high portion 
of missing values caused by sparseness in the user-item 
ratings matrix. Conventional SVD is undefined when 
knowledge about the matrix is incomplete. Moreover, 
carelessly addressing only the relatively few known entries is 
highly prone to overfitting. Earlier systems relied on 
imputation to fill in missing ratings and make the rating 
matrix dense. However, imputation can be very expensive as 
it significantly increases the amount of data. In addition, 
inaccurate imputation might distort the data considerably. 
Hence, more recent works suggested modeling directly the 
observed ratings only, while avoiding overfitting through a 
regularized model. To learn the factor vectors (pu and qi ), the 
system minimizes the regularized squared error on the set of 
known ratings parameters, whose magnitudes are penalized.  
 

4. Proposed System 
 

The fragment-based approach clearly captures information at 
a coarser level of detail, and hence it is expected to miss 
interesting correlations between users. For instance, two 
distinct selection predicates will be mapped to different 
fragments even if they are satisfied by the same tuples in the 
base tables. It is therefore expected that the basic tuple-based 
approach yields better results in terms of precision. This, 
however, comes with a cost; the tuple-based approach 
constructs large (and relatively dense) summaries and, most 
importantly, requires real-time calculations of the similarities 
between the session summary S0 of the current user and these 

of past users. On the other hand, the big advantage of the 
fragment-based approach is that it can be implemented very 
efficiently; the space of fragments grows slowly allowing for 
a scalable system, the summaries are very sparse enabling 
faster similarity calculations and, most importantly, the 
fragment-to-fragment similarities can be computed offline 
and stored for very fast retrieval when recommendations 
need to be generated, leveraging all the advantages of item-
to-item collaborative filtering. A comparable response time is 
achieved when the tuple-based instantiation employs 
MinHash synopses.  

 
4.1 SQL Query Preprocessing 

 
Because of the large and excessive amount of slightly 
dissimilar queries existing in the query logs, in order to relax 
them to increase their cardinality, and thus the probability of 
finding similarities between different user sessions, query 
preprocessing must done. The intuition is that if two users 
query the same table and attributes, using slightly different 
filtering conditions, the algorithm should consider them as 
similar. In essence, all the WHERE clauses are relaxed by 
converting the numerical data and string literals to generic 
string representations. For example, all strings are replaced 
by STR, all hexadecimal numbers by HEXNUM and all 
decimals by NUM. A similar generalization is also followed 
for lists or ranges of numbers and strings. The mathematical 
and set comparators are also replaced by string equivalents, 
for example “=” is replaced by EQU and “≤” by COMPARE. 
Each distinct fragment is assigned a numerical identifier, 
used in the query and session vector representation. For each 
new fragment not previously recorded in the query log, 
recommender system generates a new identifier. Such 
updates occur in real-time, as the current user posts a query 
including new fragments. In the case of the WHERE clause, 
only the joins and the filter conditions are stored. Because of 
the generalization, the fragments in the WHERE clause are 
not differentiated based on their actual values, but rather 
based on the attributes used for filtering. 

 
4.2 Recommender System Prototype 

 

A prototype of the proposed recommender system is 
implemented that supports the recommendation engines using 
Java and runs on top of a standard relational 
DBMS(MySQL) to store the query logs and the similarities. 
The database query interface module is built using JavaFX. 
The recommendation engine module is also built using Java. 
Once a user logs in the system, he is able to access the 
database. The user can author and submit a SQL query. 
Recommender system sends the request to the database, and 
presents the user with the results. At the same time, the 
system records the active user’s queries, creating an implicit 
user profile. This user profile is used as input to the 
algorithm, along with the predictive model to generate real-
time, personalized query recommendations. For each 
recommended query, the user is able to examine a sample of 
the results that will be retrieved, in order to decide whether it 
addresses her needs, prior to actually submitting it to the 
DBMS. Recommender system continuously monitors the 
user’s querying behavior and finds matching patterns in the 
system’s query log, in an attempt to identify previous users 
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with similar information needs. Subsequently, recommender 
system uses these “similar” users and their queries to 
recommend queries that the current user may find interesting. 
In this recommender system framework, the active user’s 
session is represented by a set of query fragments. The active 
user’s queries are forwarded to both the DBMS and the 
Recommendation Engine. The DBMS processes each query 
and returns a set of results. At the same time, the query is 
stored in the Query Log. The Recommendation Engine 
combines the current user’s input with information gathered 
from the database interactions of past users, as recorded in 
the Query Log, and generates a set of query 
recommendations that are returned to the user. The recorded 
fragments are used to identify similar query fragments in the 
previously recorded sessions, which are in turn assembled in 
potentially interesting queries for the active user. 
 
At all times, the active user is able to: (a) formulate a query 
from scratch, (b) select a recommended query and submit it 
as it is, or (c) select a recommended query and edit it before 
submitting it to the database. Moreover, the interface allows 
the user to browse the database schema, review and re-submit 
queries that were posed during his recent history. 

 
4.3 Singular Value Decomposition 

 

In a collaborative filtering problem, the connections that do 
not exist (user i has not rated item j, person x has not friended 
person y) are generally treated as missing values to be 
predicted, rather than as zeros. That is, if user i hasn’t rated 

item j, we want to guess what he might rate it if he had rated 
it. If person x hasn’t friended y, we want to guess how likely 
it is that he’d want to friend him. The recommendations are 
based on the reconstructed values. When taking the SVD of 
the social graph (e.g., plug it through svd()), basically we are 
inputing zeros in all those missing spots. That this is 
problematic is more obvious in the user-item-rating setup for 
collaborative filtering. If we had a way to reliably fill in the 
missing entries, we wouldn’t need to use SVD at all. The 
recommendations are given based on the filled in entries. If 
we don’t have a way to do that, then we shouldn’t fill them 
before we do the SVD. Let the matrix A be such that rows 
are the users and the columns are the items that the user 
likes.. One way to think of SVD is as follows: SVD finds a 
hidden feature space where the users and items they like have 
feature vectors that are closely aligned. So, when compute 
 A = U × s × V , the U matrix represents the feature vectors, 
corresponding to the users in the hidden feature space and the 
V matrix represents the feature vectors corresponding to the 
items in the hidden feature space. Now, if two vectors from 
the same feature space and ask to find if they are similar, the 
simplest thing that we can do for accomplishing that is Dot 
product. So, if we want to see user i likes item j, all  need to 
do is take the dot product of the ith entry in U and jth entry in 
V. Of course, dot product is by no means the only thing to 
apply, we can use any similarity measure that is applicable. 
Figure 2 shows the recommender system interface. 

 
 

 
Figure 2: Recommender System Interface 

 
 

 

Paper ID: NOV151879 172



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 

Volume 4 Issue 12, December 2015 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

5. Conclusion 
 
In this paper, we proposed a recommender system framework 
that aims to generate useful SQL query recommendations to 
users of relational databases. By using our recommender 
system, users can generate a set of recommendations for the 
query he submitted and he can select a suitable sq query from 
the recommendations. This reduces the time to formulate 
such complex SQL queries and also helps the less 
experienced users. The use of matrix factorization based 
recommender system improves the recommendation. 
 

References 
 

[1] Magdalini Eirinaki, Suju Abraham, Neoklis Polyzotis, 
Naushin Shaikh, “QueRIE: Collaborative Database 
Exploration”, IEEE Trans. Knowl. Data Eng. 26(7): 
1778-1790,2014 

[2] G. Chatzopoulou, M. Eirinaki, and N. Polyzotis, 
“Collaborative filtering for interactive database 
exploration,” in Proc. of the 21st Intl. Conf. on 
Scientific and Statistical Database Management 
(SSDBM’09),2009. 

[3] Shameem Ahamed Puthiya Parambath, “Matrix 
Factorization Methods for Recommender Systems”, 
Umea University, Sweden, 2013  

[4] Yehuda Koren, Robert M. Bell, Chris Volinsky, “Matrix 
Factorization Techniques for Recommender Systems.” 
IEEE Computer, 42(8): 30-37, 2009 

[5] Noam Koenigstein, Parikshit Ram, Yuval Shavitt, 
“Efficient Retrieval of Recommendations in a Matrix 
Factorization Framework”, CIKM'12, Proceedings of 
the21st ACM international conference on information 
and knowledge management, 535-544 

[6] J. Akbarnejad, G. Chatzopoulou, M. Eirinaki, S. Koshy, 
S. Mit-tal, D. On, N.Polyzotis, and J. S. V. Varman, 
“SQL QueRIE Recommendations,” in Proc. of the 36th 
Intl. Conf. on Very Large DataBases (VLDB 2010), 
2010.  
 

Author Profile 

 

Visak Paul received the Bachelor of Technology 
degree in Computer Science and Engineering from 
Mahatma Gandhi University, Kerala in 2012. He is 
currently doing Master of Technology degree in 
Computer Science and Engineering with specialization 

in Information Systems from Mahatma Gandhi University, Kerala.  
 

Sreena Sreedhar is an Assistant Professor at the 
Information Technology Department, Ilahia College of 
Engineering and Technology, Muvattupuzha, Kerala. 

Paper ID: NOV151879 173




