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Abstract: The Homogenous biquadratic equation with five unknowns given by 22244 )(26 Rwzyx   is considered and 
analyzed for finding its non zero distinct integral solutions. Introducing the linear transformations x = u + v, y = u – v, z = 2uv +1, w 
=2uv-1 and employing the method of factorization different patterns of non zero distinct integer solutions of the equation under the 
above equation are obtained. A few interesting relations between the integral solutions and the special numbers namely Polygonal 
numbers, Star number, Pronic number and Gnomonic number are exhibited.  
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Notations used: 

tm,n - Polygonal number of rank n with sides m.  
sn - Star number  
pn - Pronic number  
Gn- Gnomonic number  
 
1. Introduction  
 
The theory of Diophantine equations offers a rich variety of 
fascinating problems. In particular biquadratic Diophantine 
equations, homogeneous and non-homogeneous have 
aroused the interest of numerous mathematicians since 
antiquity [1-12]. In this context one may refer [4-10] for 
various problems on the biquadratic Diophantine equations. 
However, often we come across non-homogeneous 
biquadratic equations and as such one may require its 
integral solution in its most general form. This paper 
concerns with the homogeneous biquadratic equation with 
five unknown 22244 )(26 Rwzyx   for 
determining its infinitely many non-zero integral solutions. 
Also a few interesting properties among the solutions are 
presented.  
  
2. Method of Analysis  
 
The biquadratic equation with five unknowns to be solved 
for its non-zero distinct integral solution is  

 
22244 )(26 Rwzyx                   (1) 

Consider the transformations  
x = u + v, y = u – v, z = 2uv +1, w = 2uv – 1         (2)  

On substituting (2) in (1), we get  
222 26Rvu                                (3)  

 
2.1 Pattern: I 
 
Assume 26 = (5+ i) (5 –i) (4) 
and R = a2 + b2 = (a + i b)(a – i b) (5)  

Using (4) and (5) in (3) and employing the method of 
factorization, we get.  
(u + i v) (u – iv) = (5 + i) (5 – i) (a + i b)2 (a – i b)2 On 
equating the positive and negative factors, we get 
u + iv = (5 + i) (a + i b)2  
u + iv = (5 – i) (a – i b)2 
 
On equating real and imaginary parts, we obtain  
u = u(a, b) = 5a2 – 5b2 – 2ab  
v = v (a, b) = a2 – b2 + 10ab  
 
On substituting u and v in (2) we get the values of x, y, z and 
w. The non-zero distinct integrals values of x, y, z, w and R 
satisfying (1) are given by  
x = x (a, b) = 6a2 – 6b2 + 8ab  
y = y (a, b) = 4a2 – 4b2 – 12ab  
z = z (a, b) =2(5a4 + 5b4 – 30a2 b2 + 48a3b – 48ab3) +1 
w = w (a, b) = 2(5a4 + 5b4 – 30a2 b2 + 48a3b – 48ab3) – 1 
R = R (a, b) = a2 + b2 
 

Properties:-  

1. x (a, 1) + y(a, 1) – Pn – Sna  0 (Mod 11)  
2. R (1, 2a) – 4t4,a  0 (Mod 1)  
3. .z (2a, 1) – 3 [x(a, 1) + y(a, 1)] + 26 t4,a – G6a  0(Mod 32)  
4. x (a +1, a+1) – ct16,a +4Ga = 8  
5. y (a+1, a+1) + t26,a + t30,a + 14t4,a  0 (Mod 12)  
 

2.2 Pattern: II  

 
Also 26 can be chosen in equation (3) as  

26 = (1 +i5) (1 – 5i)                                 (6) 
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Using (5) and (6) in equation (3) it is written in factorizable 
form as  

(u + i v) (u – iv) = (1 +5i) (1 – 5i) (a +ib)2 (a – ib)2 
 
On equating the positive and negative factors, 
 we get,  
(u + iv) = (1 +5i) (a +ib)2  

(u – iv) = (1 -5i) (a –ib)2  
 
On equating real and imaginary parts, we have  
u = u (a, b) = a2 – b2 – 10ab  
v = v (a, b) = 5a2 – 5b2 + 2ab  
 
Substituting the values of u and v in (2), the non-zero 
distinct values of x, y, z, w and R satisfying (1) are given by  
x = x (a, b) = 6a2 – 6b2 – 8ab  
y = y (a, b) = - 4a2 + 4b2 – 12ab  
z = z (a, b) = 2(5a4 + 5b4 – 30a2 b2 + 48a3b – 48ab3) +1  
w = w (a, b) = 2 (5a4 + 5b4 – 30a2 b2 + 48a3b – 48ab3) – 1  
R = R (a, b) = a2 + b2 

 

Properties:- 

1. x (a, 1) + R(a, 1) – 7t4, a – G4a  0 (Mod 4)  
2. 2y (1, b) – (R (1, 2b))2 +G12b  0 
3. x (n, n-1) – G6n+ Sn+2t4, n-Gn+3 = 0  
4. y (2a, 2a) + 48t4,a = 0 
5. R (a (a+1), 1) – Pa + t6,A – 2t4,A – 2 = 0 
 

2.3 Pattern: III 

 
Rewrite (3) as  

1 * u2 = 26R2 – v2                                                      (7) 
 

Assume u = 12a2 –b2 = ( 26 a + b) ( 26 a – b)                (8) 
 

Write 1 as 1 = ( 26 +5) ( 26 -5)                  (9) 
 
Using (8) and (9) in (7) it is written in factorizable form as  
( 26 +5) ( 26  - 5) ( 26 a+b)2 ( 26 a –b)2 = ( 26 R 

+v) ( 26 R –v)                        (10) 
 
On equating the rational and irrational parts, we get  
( 26 +5) ( 26 a + b)2 = ( 26 R + v) 
( 26 -5) ( 26 a - b)2 = ( 26 R - v)  
 
On equating the real and imaginary parts, we get  
R = R (a, b) = 26a2 + b2 + 10ab  
v = v (a, b) = 130a2 + 5b2 + 52ab  
 
Substituting the values of u and v in (2), the non – zero 
distinct integral values of x, y, z, R and w satisfying (1) are 
given by  
x = x (a, b) = 156a2 + 4b2 + 52ab  
y = y (a, b) = 104a2 – 6b2 – 52ab  
z = z (a, b) =2(3380a4 – 5b4 + 1352 a3b – 52ab3) + 1 
w = w (a, b) = 2(3380a4 – 5b4 + 1352a3b – 52ab3) -1  
R = R (a, b) = 26a2 + b2 + 10ab  
 

Properties: 

1. R (n +1, 1) – ct16,n -18t4, n – G27n  0 (Mod 37)  
2. x (n+1, n+2) + y(n +3, 1) – ct16,n – 308t4,n – G266n  0  
 (Mod 208) 

3. R (1, 2n) – 4Pn – 8Gn  0 (Mod 27) 
4. x (2n, 3n) – 1072 t4,n = 0 
5. y (2n, 3n) – Sn – 44t4,n -3Gn =0 
 

2.4 Pattern: 4 

 
Rewrite (3) as  

1 * v2 = 26R2 – u2                                   (11) 
Write 1 as 1 = ( 26 1)( 26 1)

25
 

                        
 (12)  

Assume v = 26a2 – b2 = ( 26 a+ b) ( 26 a –b)                (13) 
Using (12) and (13) in (11), it is written in factorizable form 
as  
( 26 1)( 26 1)

25
   ( 26 a + b)2 ( 26 a –b)  

= ( 26 R+ u) ( 26 R –u) (14) 
On equating the rational and irrational factors, we get  

 
Replacing a by 5A and b by 5B in the above equations (13) 
and (15), we get  
R =R (A, B) = 130A2 + 5B2 + 10AB  
u = u (A, B) = 130A2 + 5B2 + 260AB  
v = v (A, B) = 650A2 – 25B2  
On substituting the values of u and v in (2), the non –zero 
distinct integrals values of x, y, z, w and R satisfying (1) are 
given by  
x = x (A, B) = 780A2 – 20B2 + 260AB 
y = y (A, B) = - 520A2 + 30B2 + 260AB  
z = z (A, B) = 2 (84500 A4 – 125B4 + 16900 A3B – 
6500AB3) +1 
w = w (A, B) = 2(84500A4 – 125B4 + 10900A3B – 
6500AB3) -1  
R =R (A, B) = 130A2 + 5B2 + 10AB  
 
Properties 

1. R (A, 1) – x (A, 1) + 650t4,A – 135 GA  0 (Mod 14)  
2. R (1, 2n) – y (1, 2n) – 20Pn – t242,n – t806, n  
 +201Gn  0 (Mod 389)  
3. x (1, 4n) + t642,n – t443,n + 361 Gn  0 (Mod 781)  
4. y (1, 3B) + t4,B – PB – 529 GB – t542, B + 519 = 0 
5. R (A+1, A) – t292,A – 207 GA  0 (Mod 131)  
 

2.5 Pattern: 5 

 
Write (3) as (u +R) (u – R) = (5R +v) (5R –v) (16) 
Which is expressed is the form of ratio as  

5
5
u R R v A

R v u R B

 
 

 
, B  0 (17) 

 
This is equivalent to the following two equations,  
- u A + R(5B +A) – VB = 0  
u B + R (B – 5A) – VA = 0  
 
On solving the above equations by the method of cross 
multiplication we get,  
u = u (A, B) = - A2 – B2  
R = R (A, B) = A2 + B2 
v = v (A, B) = -5A2 + 5B2 + 2AB 
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Substituting the values of u and v in (2), the non – zero 
distinct integral values of x, y, z, w and R satisfying (1) are 
given by,  
x = x (A, B) = - 6A2 + 4B2 + 2AB 
y = y (A, B) = 4A2 – 6B2 – 2AB  
z = z (A, B) = 2[5A4 – 5B4 -2A3B – 2AB3] +1 
w = w (A, B) = 2[5A4 – 5B4 – 2A3B – 2AB3] – 1 
R = R (A, B) = A2 + B2 

 

Properties:  

1. x (A, 1) + R(A, 1) + t8,A + 2t4, A  0 (Mod 5) 
2. y (n, n+1) – t8,n + 6Gn + Pn  0 (Mod 2)  
3. R (2, 2n) – 4t4,n  0 (Mod 4)  
4. y (2A, A) – Sn – 3GA = 0  
5. R (A+1, A-1) – 2t4,A  0 (Mod 2) 
 
3. Conclusion  
 
It is worth to note that in (2), the transformations for z and w 
may be considered as z = 2u + v and w = 2u –v. For this 
case, the values of x, y and R are the same as above where 
as the values of z and w changes for every pattern. To 
conclude one may consider biquadratic equations with 
multivariables (>5) and search for their non-zero distinct 
integer solutions along with their corresponding properties.  
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