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Notations used 

tm,n - Polygonal number of rank n with sides m. Ctm,n - Centered Polygonal number of rank n with sides m sn - Star number pn - 
Pronic number Gn - Gnomonic number  
 
1. Introduction  
 
The number theory is queen of Mathematics. In particular, 
the Diophantine equations have a blend of attracted 
interesting problems. For an extensive review of variety of 
problems, one may refer to [3-12]. In this work, we are 
observed another interesting five different methods of the 
non-zero integral solutions the ternary quadratic 
homogeneous Diophantine equation 8x2 + 8y2 – 15xy = 40z2. 

Further, some elegant properties among the special numbers 
and the solutions are observed.  
 
2. Method of Analysis  
 
The ternary quadratic homogeneous Diophantine equation to 
be solved is  

8x
2+8y2– 15xy =40z2                                              (1) 

The substitution of linear transformations  
x = u + v and y = u – v (u  v 0)               (2) 

in (1) leads to  
u2 +31v2 = 40z2                                   (3)  

The above equation is solved through different methods and 
different patterns of integer solution to (1) are obtained.  
 
2.1 Pattern: I 
 
Write 40 as 

40 = (3 + i 31 ) (3 - i 31 )                        (4)  
Assume z = a2 +31b2, where a, b >0                  (5)  

Using (4) and (5) in (3) and applying the method of 
factorization, define  

(u + i 31 v) = (3 + i 31 ) (a + i 31 b)2           (6) 
Equating the real and imaginary parts, we have  
u = u (a, b) = 3a2 – 93b2 – 62ab  
v = v (a, b) = a2 – 31b2 + 6ab  
Substituting the above u and v in equation (2) the value of x 
and y are given by  
x = x(a, b) = 4a2 – 124b2 – 56ab  

y = y(a, b) =2a2 – 62b2 – 68ab                     (7) 
 
Thus (5) and (7) represents non-zero distinct integral 
solutions of (1) in two parameters.  
 
Properties:-  

1. x (a, 1) – 4 t4,a + G28a  0 (Mod 123)  
2. z (a, a +1) - 32 t4, a – G31a  0 (Mod 32)  
3. y (1, b) – 62 t4,b + G34b  0 (Mod 3)  
4. x (a, 1) + z (a, 1) -5t4,a +G28a  0 (mod 92) 
5. y (2, b)–x (2, b)+186 t4,b+G124b  0(Mod7) 
 

2.2 Pattern: II  

 
Consider (3) as u2 – 9z2 = 31 (z2 –v2) (8) 
Write (8) in the form of ratio as  

3 ( )31 , 0
3

u z z v

z v u z






 
  

 
 

 
This is equivalent to the following two equations  
- u + 31v + z (31 + 3) = 0  
u + v + z (3 - ) = 0  
 
On employing the method of cross multiplication, we get.  
u = - 32 + 932 – 62 
v = -2 + 312 + 6 (9) 
z = -2 - 312 (10) 
 
Substituting the values of u and v from (9) in (2) the non-
zero distinct integer values of x, y are given by  
x = x (,) = - 42 + 1242 - 56  
y = y (,) = - 22 + 622 – 68 (11)  
 
Thus (10) and (11) represent the non- zero distinct integer 
solution of equation (1) in two parameters.  
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Properties:- 

1. z ( +3,  +3) +32 t4, + G96  0 (Mod 287)  
2. y (3, 2) – 248 t4, + G204  0 (Mod 17)  
3. x (, 1) + 4 t4, + G23  0 (Mod 125)  
4. x(2, ) + y(2, ) – 186t4, + 124G + 23 = 1.  
5. x(3,2)–y (2, 3)+ 150t +151p+ 151t4, +28 =0  
 

Note:- 

(8) also be expressed in the form of ratio in three different 
wags as follows. 
(1) ( 3 )

31( ) 3
u z z v

z v u z





 
 

 
,   0.  

(2) ( 3 ) 31( )
( 3 )

u z z v

z v u z





 
 

 

,   0.  

(3) ( 3 )
31( ) 3

u z z v

z v u z





 
 

 

,   0.  

Repeating the analysis as above, we get different pattern of 
solution to (1).  
 

2.3 Pattern: III 

 
Rewrite (3) as 31v2 = 40z2 – u2 (12) 
Write 31 as,  
31 = (2 10 +3) (2 10  - 3) (13) 
Let v = 40a2 – b2 (14) 
 
Using (13) and (14) in (12) and employing the method of 
factorization, we write  
(2 10 z +u) = (2 10 +3) (2 10 a + b)2  
 
Equating the rational and irrational parts, we have  
z = z(a, b) = 40a2 + b2 + 6ab (15) u = u(a, b) = 120a2 + 3b2 + 
80ab (16) Substituting (14) & (16) in (2), the values of x and 
y are  
x = x(a, b) = 160a2 + 2b2 + 80ab 
y = y(a, b) = 80a2 + 4b2 + 80ab  
Thus (17) and (15) represent the integer solution to (1) 
 

Properties: 

1. x(a, 1) – 160t4,a – G40a  0 (Mod 3)  
2. z (3a, 1) – 360 t4,a – G9a  0 (Mod 2) 
3. x (a, 2) – z (a, 2) – 160 t4,a –G80a  0 (Mod 9) 
4. y(a, 3) – 80 t4,a – G120a  0 (Mod 37)  
5. y(a, a) – 164 t4,a = 0 
 
3. Conclusion  
 
 In this paper, we have presented different patterns of integer 
solutions to the ternary quadratic equation 8x

2+8y2– 15xy 
=40z2 representing the cone. As this Diophantine equation is 
rich in variety, one may attempt to find integer solutions to 
other choices of equations along with suitable properties. 
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