
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 11, November 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Data Searching In Cloud Computing Environment
Based on Map Reduce

Devarapalli Narasa Reddy
1
, Dasari Rajesh

2

1, 2Computer Science and Engineering, Rise Group of Institutions, Ongole, India

Abstract-Cloud has been an revolution in the IT-Services computing. cloud frames availability of large amount of data resources for its

users which signifies the fact that an additional data modeling structure has to designed for faster and efficient search and provide the

right content to the analyst. Time consuming and non rapid searches cannot withstand the given scenario, which prompted many

researches to work in these area, in these paper we present an case study based on MapReduce and yarn over Hadoop or HDFS and

show case an Trusted and Efficient data Searching Mechanism using MapReduce over Cloud Environment.

Keywords: Hadoop, HDFS, Map Reduce, Cloud Environment

1. Introduction

Cloud computing [1] is entering our lives and changing the
way people consume information dramatically. Clouds
transform IT infrastructures with an emphasis on making
them flexible, affordable, and capable of serving millions of
users, satisfying their computing or storage demands. The
design of early cloud computing systems has evolved from,
and was dominated by, the concepts of cluster and grid
computing. Currently, as the concepts of the cloud become
advanced and mature, cloud networking and communication
processes begin playing a central role. Cloud Networking has
emerged as a promising direction for cost-efficient and
reliable service delivery across data communication
networks. The dynamic location of service facilities and the
virtualization of hardware and software elements are
stressing the communication network and protocols,
especially when datacenters are interconnected through the
Internet.

The optimisation of cloud networking can significantly
increase system performance, reducing energy consumption
and save costs not only inside individual data centers, but
also globally, on the Internet scale. Developing novel
network architectures would facilitate adoption of modular
container-based data centres. Advancements in internet
working become key enabler for building hybrid clouds and
federations of clouds. Service provisioning over
heterogeneous connections and wireless links can enhance
computational capacity and enrich application experience of
mobile users. Efficient resource management and scheduling
in data centres and cloud infrastructures is open research
challenge that has to be addressed and novel architectures,
telecommunication technologies, and protocols must be
developed to ensure efficiency of future cloud computing
systems.
Apache Hadoop with MapReduce is the workhorse of
distributed data processing[2]. With its unique scale-out
physical cluster architecture and its elegant processing
framework initially developed by Google, Hadoop has
fostered explosive growth in the new field of big data
processing. Hadoop has also developed a rich and diverse
ecosystem of applications, including Apache Pig[4], which is
a powerful scripting language, and Apache Hive[3], which is
a data warehouse solution with a SQL-like interface.

Unfortunately, this ecosystem is built on a programming
paradigm that cannot solve all problems in big data.
MapReduce provides a specific programming model that,
although simplified with tools like Pig and Hive, is not a big
data panacea. Let's begin our introduction to MapReduce 2.0
(MRv2) — or Yet Another Resource Negotiator (YARN) —
with a quick review of the pre-YARN Hadoop architecture.

The concept of MapReduce [7] is very simple to understand
for those who are familiar with clustering and data
processing techniques. It is a programming model that is
associated with the implementation of processing and
generating large data sets.

MapReduce[2] function on data sets of key & value pair is
the programming paradigm of large distributed operation [1].
The data flow architecture of MapReduce shows the
techniques for analyses and produce the indexes [10] and is
shown in figure1.

Figure 1: MapReduce data flow

Our main purpose of this work is to develop a technique for a
fast and efficient way of searching data in the MapReduce

Paper ID: SUB158847 137

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 11, November 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

paradigm of the Hadoop Distributed File System The
framework of Hadoop MapReduce is a master – slave
architecture, which has a single master server called job

tracker and several slave servers called task trackers, which
run one per node in the cluster [3] MapReduce operation on
data sets of key and value pair in the programming paradigm
of large distributed operation [1].

In this paper, we have presented novel architecture and
design with dynamic scaling scenario to investigate the
performance of Hadoop in high speed retrieval of data in the
cloud environment by replacing the map phase of the
MapReduce paradigm with a web server (jetty). These
servers (jetty) is a pure Java based server consists of Java
servlets. We also implement a searchable mechanism in
HDFS using indexing in both Name Node and Data Node.

The rest of the paper is structured as follows. Module II & III
highlights the related works and preliminaries. Module IV
narrates the proposed methodology technology. Module V
narrates the implementation details followed by the results
and analysis in module VI. Finally work done and future
scope is concluded in module VII.

2. Related Work

In February 2003 first MapReduce library was introduced
@Google. MapReduce was made easy for data processing on
large cluster in 2004 [4].

In December 2005 Doug cutting notices that the MapReduce
uses Nutch which is a searching engine. After that Hadoop
moves out of the Nutch in February 2006. Hadoop was at
first designed on the basis of Google's MapReduce in which
an application was run down into many small parts. In April
2007 yahoo made Hadoop to run on more than 1000 nodes in
a cluster [9]

In 2008 information retrieval framework consists of network
nodes, which was shared and peer was maintained in B+ tree
containing IP hash values [3]. In January 2008 Hadoop made
apache as a top level project center.

In July 2009 new Hadoop subproject was found where
Hadoop core was renamed as Hadoop Common. In this
subproject Hadoop distributed file system (HDFS) and
MapReduce get separated for doing separate work. HDFS is
designed to store very large data sets [7]. In 2010 web
application based process is used to handle high throughput
traffic [6].

Facebook in 2010 has declared that they have the largest
Hadoop cluster in the world with 21 PetaByte of storage, and
it's grown up to 30PetaByte in 2011 July.

In 2011 May MapRreduce have reported the availability of
an alternate file system for Hadoop, that will replace the file
system of HDFS with a full random access to read and write
file system [5].

3. Preliminaries

3.1. Hadoop Architecture

Hadoop is an open source cloud computing environment
which supports the large data sets in a distributed computing
environment, primarily in data warehouse systems and plays
an important role in support of big data analytics to
understand the user behavior and their needs in web services.
It stores application data and file system separately [11].

Hadoop Distributed File System is highly fault-tolerant,
which provides high throughput access to the application
data and is a perfect application that has large data sets. It
has the Master and Slave architecture. The cluster of Hadoop
Distributed File System consists of DataNode and
NameNode [11] shown in Figure 2.

NameNode which is a central server, also called as a Master
server, is responsible for managing the file system
namespace and client access to files and DataNode in the
cluster node are responsible for files storage.

Google introduced MapReduce to hold up large distributed
computing, on large clusters of computers to implement huge
amounts of data set. MapReduce is a structure that processed
parallel problems of big data set using a large number of
computers that is collectively referred to as a cluster or a
grid.

Figure 2: HDFS Architecture

4. Proposed Methodology

The data in Hadoop Distributed File System is scattered
which makes searching and data retrieval is one of the most
challenging tasks in HDFS. So to overcome this challenge
the proposed system provides a searchable mechanism in
HDFS. The MapReduce mechanism of Hadoop is considered
as the web server in the map phase. This web server is
implemented by Application Server Tomact and is
considered as the web interface. Web applications are
generated in the HDFS and the web server is started in the

Paper ID: SUB158847 138

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 11, November 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

form of Hadoop job(Json Creator) by submitting our keys to
URL Hadoop url/file/key shown in the figure 3.

Figure 3 gives the insight of the proposed architecture.
Following steps explain the steps of the proposed
technology.
1) When the client makes a request in the Hadoop i.e.

Hadoop url/file/key, the key is passed to the NameNode.
2) The web server which is running in the NameNode is

divided into the master server and a slave server. The
master server will have multilevel index and slave will
have data and key index.
a) The master server will do the entire indexing task and

slave server will do the entire retrieval task.
b) The master server will take the key from the client and

give to slave server.
c) These slave servers will check for the key inthe index

of NameNode
d) On finding, the key will be sent to the Master server

and the Master server will pass the received key to the
DataNode.

3) In the DataNode the web server is again divided in
Master and slave server which do the indexing and
retrieval task of data.
a) Master server takes the key from the NameNode and

passes the key to the slave server.
b) Slave server takes the key and goes to the header where

key of different ranges [a-m, n-z and 1-9] have been
stored.

c) The slave server with key directly goes to the record
where ranges have been stored.

d) After getting the key and its value it sends the key &
value pair to Master server

e) The Master server in turn passes the key & value pair
to the NameNode.

f) Finally NameNode’s Master passes the value to the
requesting client.

4.1. Web server in the NameNode

The web server in the NameNode is divided into Master and
Slave server. The Master server contains a multi - level index
and slaves have data and key index. When the data request is
made, the web server will pass the key on to the multi-level
index. Indexing all the process is done by Master server and
all retrieval process are done by slave servers.

4.2. Application Web server in the DataNode

The web server in the DataNode is also divided into Master
and Slave server and the DataNode contains all the records
and B+ tree as a header in web server.

4.3. Read

B+ tree is implemented in the header of the DataNode, which
finds the address of the data stored in the record by using the
key from the web server (figure 5).

4.4. Write

After writing data in the DataNode the header length is
updated (figure 4). The load balancer is implemented in

between clients and servers to balance the work load of the
web server

Figure 3: Proposed Architecture

Figure 4: Flow diagram for write request

Figure 5: Flow diagram for read request

5. Implementation

With the new power that YARN provides and the
capabilities to build custom application frameworks on top of
Hadoop, you also get new complexity. Building applications
for YARN is considerably more complex than building
traditional MapReduce applications on top of pre-YARN
Hadoop because you need to develop an ApplicationMaster,
which is the ResourceManager launch when a client request
arrives. The ApplicationMaster has several requirements,

Paper ID: SUB158847 139

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 11, November 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

including implementation of a number of required protocols
to communicate with the ResourceManager (for requesting
resources) and NodeManager (to allocate containers). For
existing MapReduce users, a MapReduce ApplicationMaster
minimizes any new work required, making the amount of
work required to deploy MapReduce jobs similar to pre-
YARN Hadoop.

In many cases, the life cycle of an application in YARN is
similar to MRv1 apps. YARN allocates a number of
resources within a cluster, performs processing, exposes
touchpoints for monitoring of the progress of the application,
and finally releases resources and does general cleanup when
the application is complete. A boilerplate implementation of
this life cycle is available under a project called Kitten (see
Resources). Kitten is a set of tools and code that simplifies
the development of applications in YARN, allowing you to
focus on the logic of your application and initially ignore the
details of negotiation and running with the constraints of the
various entities in a YARN cluster. If you want to go further,
however, Kitten provides a set of services that you can use to
handle interactions with other cluster entities (such as the
ResourceManager). Kitten comes with its own
ApplicationMaster, which is usable but shipped primarily as
an example. Kitten makes strong use of Lua script as its
configuration service.

6. Proof of Concept

We considered Data base of Hospital and created an
unending data considering of patient information. Apply the
concept of searching key value over the large patient data
and extracting the required information using the
MapReduce with Yarn in Hadoop Environment has yielded
less time.

7. Conclusion and Future Scope

In this paper, an architecture and design with dynamic
scaling scenario to investigate the performance of Hadoop in
high speed retrieval of data in a cloud environment is
presented. Although Hadoop continues to grow in the big
data market, it has begun an evolution to address yet-to-be-
defined large-scale data workloads. YARN is still under
active development and may not be suitable for production
environments, but YARN provides significant advantages
over traditional MapReduce. It permits the development of
new distributed applications beyond MapReduce, allowing
them to coexist simultaneously with one another in the same
cluster. YARN builds upon existing elements of current
Hadoop clusters but also refines elements such as the
JobTracker to increase scalability and enhance the ability to
share clusters by many differing applications. YARN, with
its new capabilities and new complexity, will soon be
coming to a Hadoop cluster near you.

References

[1] L. Youseff, M. Butrico, and D. Da Silva, ―Towards a

unified ontology of cloud computing,‖ in Proc. 2008

Grid Computing Environments Workshop.

[2] Apache Hadoop project .[online]
http://www.ibm.com/developerworks/library/bd-
adoopyarn/

[3] Apache Hive .[online] http://www-
01.ibm.com/software/data/infosphere/hadoop/hive/

[4] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S.
Anthony, H. Liu, P. Wyckoff, and R. Murthy, ―Hive – a
warehousing solution over a Map-Reduce framework,‖
Proceeding very large databases (PVLDB), 2009, vol. 2,
pp. 1626–1629.

[5] Bhandarkar, M. ―MapReduce programming with apache
Hadoop‖, parallel & distributed processing international
symposium on digital object identifier, IEEE, April 20
2010, page 1-5.

[6] G. SubhaSadasivam, V.Karthikeyan, P. Raja, ―Design
and implementation of a novel peer-to- peer information
retrieval framework‖, March 2008, pages: 1-9.

[7] J. Dean and S. Ghemawat, ―MapReduce: Simplified data
processing on large clusters,‖ in Operating system
design and implementation (OSDI), a computer science
conference, 2004, pages: 137–150.

[8] Jin Ming Shih;Chih Shan;Ruay Shiung Chang,
―Simplifying MapReduce data processing‖, Utility and
cloud computing(UCC), 4th IEEE International
conferences on digital object identifier,2011,pages:366-
370.

[9] Krishnan S.counio, J.C. ―Pepper: An Elastic web server
farm for cloud based on Hadoop‖ Cloud computing
technology and science, IEEE second international
conferences on digital object identifier ,2010,pages 741-
747.

[10] Tom White, ―Hadoop: The Definitive Guide‖, First
Edition, Yahoo press, June 2009.

[11] Apache Hadoop project (2012). [Online].
Available:http://hadoop.apache.org/.

[12] Yongqiang He, Rubao Lee, Yin Huai, Zheng Shao,
Jain,N., Xiaodong Zhang, ZhiweiXu, ―RCFile: A fast
and space efficient data placement structure in
MapReduce based warehouse systems‖, in Data
engineering(ICDE), IEEE 27th international conference
on digital object identifier,2011,pages 1199-1208.

[13] Jin Ming shih, Chin-shan lao,Ruay-shing chang ,
―Simplifying MapReduce Data Processing‖, 2011 fourth
IEEE international . Conference on Utility and cloud
computing, pages-366-370.

[14] Xingguo Cheng, Nanfeng Xiao,Faliang Huang
―Research on HDFS-based Web Server Cluster‖, 2011
International conference on Digital object identifier,
pages: 1-4.

[15] Steffen Heinzl,Christoph Metz, ―Toward a Cloud-ready
Dynamic Load Balancer Apache Web Server‖, 2013
Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprise, pages 242-245.

[16] NIST Definition of Cloud computing v15,
csrc.nist.gov/groups/SNS/cloud-computing/cloud-
efv15. doc.

[17] Daniel Grosu, M.S, ―Load Balancer in Distributed
Systems: A Game Theoretic Approach‖, The University
of Texes at San Antonio, May 2003.

Paper ID: SUB158847 140

http://www.ibm.com/developerworks/library/bd-adoopyarn/
http://www.ibm.com/developerworks/library/bd-adoopyarn/
http://www-01.ibm.com/software/data/infosphere/hadoop/hive/
http://www-01.ibm.com/software/data/infosphere/hadoop/hive/

