Fixed Point Theorem for Compatible Mapping in Fuzzy Metric Space

Raghu Nandan Patel¹, Manoj Kumar Tiwari²

¹Government Naveen College, Balrampur, Chhattisgarh, India
²Government Girls Polytechnic College, Bilaspur, Chhattisgarh, India

Abstract: The present paper we establish a common fixed point theorem for compatible pair of self maps in a fuzzy metric space.

2000 Mathematics Subject Classification: 54H25, 47H10.

Key Words and phrases: Common fixed point, Fuzzy metric space, compatible maps.

1. Introduction

The concept of fuzzy sets was initiated by Zadeh [27] in 1965 and the concept of fuzzy metric space was introduced by Kramosil and Michalek [12]. Grabiec [7] proved the contraction principle in the setting of the fuzzy metric space which was further generalization of results by Subrahmanyam [25] for a pair of commuting mappings. Also, George and Veeramani [6] modified the notion of fuzzy metric spaces with the help of continuous t-norm, by generalizing the concept of probabilistic metric space to fuzzy situation. Also, Jungck and Rhoades [10] defined a contraction principle in the setting of the fuzzy metric space by Kramosil and Michalek [12]. Grabiec [7] proved the following conditions: for all \(x, y, z \in X \), and \(s, t > 0 \),

(i) \(M(x, y, 0) = 0 \), \(M(y, y, t) > 0 \),

(ii) \(M(x, y, t) = 1 \) for all \(t > 0 \) if and only if \(x = y \),

(iii) \(M(x, y, t) = M(y, x, t) \),

(iv) \(M(x, y, t) * M(y, z, s) \leq M(x, z, t + s) \),

(v) \(M(x, y, \cdot : [0, \infty) \to [0, 1] \) is left continuous.

In this case, \(M \) is called a fuzzy metric on \(X \) and the function \(M(x, y, t) \) denotes the degree of nearness between \(x \) and \(y \) with respect to \(t \).

Also, we consider the following condition in the fuzzy metric space \((X, M, \ast)\):

\(\lim_{t \to 0} M(x, y, t) = 1 \), for all \(x, y \in X \).

It is important to note that every metric space \((X, d)\) induces a metric space \((X, M, \ast)\) where \(\ast = \min \{a, b\} \) and for all \(a, b \in X \), we have \(M(x, y, t) = \frac{t}{1 + d(x, y)} \), for all \(t > 0 \), and \(M(x, y, 0) = 0 \), so-called the fuzzy metric space induced by the metric \(d \).

DEFINITION 1.3[6]) The triplet \((X, M, \ast)\) is called a fuzzy metric space (shortly, a FM-space) if, \(X \) is an arbitrary set, \(\ast \) is a continuous t-norm and \(M \) is a fuzzy set on \(X \times [0, 1] \) satisfying

(i) \(M(x, y, 0) = 0 \), \(M(y, y, t) > 0 \),

(ii) \(M(x, y, t) = 1 \) for all \(t > 0 \) if and only if \(x = y \),

(iii) \(M(x, y, t) = M(y, x, t) \),

(iv) \(M(x, y, t) * M(y, z, s) \leq M(x, z, t + s) \),

(v) \(M(x, y, \cdot : [0, \infty) \to [0, 1] \) is left continuous.

The purpose of this paper is to obtain a common fixed point theorem for compatible pair of self mappings in fuzzy metric space.

We have used the following notions:

DEFINITION 1.1[27]) Let \(X \) be any set. A fuzzy set \(A \) in \(X \) is a function with domain \(X \) and values in \([0, 1]\).

DEFINITION 1.2[6]) A binary operation \(\ast : [0, 1] \times [0, 1] \to [0, 1] \) is called a continuous t-norm if, \((0, 0), \ast)\) is an abelian topological monoid with unit 1 such that a \(\ast b \leq c \) whenever \(a \leq c \) and \(b \leq d \), for all \(a, b, c, d \in [0, 1] \).

For an example: \(a \ast b = ab, a \ast b = \min \{a, b\} \).
sequence such that \(\lim n \to \infty A_n = \lim n \to \infty B_n = p \), for some \(p \) in \(X \).

LEMMA 1.11 ([20]) Let \((X, M, *)\) be a fuzzy metric space. If there exists \(k \in (0, 1) \) such that \(M(x, y, k t) \geq M(x, y, t) \) for all \(x, y \) in \(X \), then \(x = y \).

PROPOSITION 1.12: Let \(A \) and \(B \) be compatible, self mappings of a fuzzy metric space \(X \).

(1) If \(A y = B y \) then \(AB y = BA y \).

(2) If \(A_n, B \to y \), for some \(y \) in \(X \) then \(A B x_n \to A y \) if \(A \) is continuous.

(3) If \(A \) and \(B \) are continuous at \(y \) then \(A y = B y \) and \(AB x_n \to B y \).

PROOF: (1) Let \(A y = B y \) and \(\{x_n\} \) be a sequence in \(X \) such that \(x_n \to y \) for all \(n \). Then \(A x_n \to A y \) and \(B x_n \to B y \). Now by the compatibility of \(A \) and \(B \), we have \(M(A B x_n, B A y, t) = M(A B x_n, B A y, t) = 1 \) which yields \(A B x_n \to A y \).

(2) If \(A_n \to y \), for some \(y \) in \(X \) then \(A B x_n \to A y \) if \(A \) is continuous.

(3) If \(A \) and \(B \) are continuous then from (a) we have \(B A x_n \to A y \). By the uniqueness of the limit \(A y = B y \). Hence \(AB x_n \to B y \).

2. Main Results

THEOREM 2.1. Let \((X, M, *)\) be a complete fuzzy metric space with additional condition (vi) and with \(a \geq a \geq 1 \) for all \(a \in [0, 1] \). Let \(A, B, S \) and \(T \) be mappings from \(X \) into itself such that

(i) \(A(X) \subseteq T(X), B(X) \subseteq S(X) \)

(ii) One of \(A, B, S \) or \(T \) is continuous,

(iii) \((A, S) \) and \((B, T)\) are compatible pairs of mappings,

(iv) \(M(A x, B y, t) \geq \phi(\min\{M(S y, T y, t), M(A x, T y, t), M(S y, B y, (2 - \alpha t), t)\}) \) for all \(x, y \in X, \alpha \in (0, 2) \) and \(t > 0 \),

where \(\phi : [0, 1] \to [0, 1] \) is a continuous function such that \(\phi(t) > t \) for each \(0 < t < 1 \).

Then, setting \(x = u \) and \(y = x 2n+1 \) in contractive condition (iv) with \(\alpha = 1 \), we get

\[
M(A u, B x 2n+1, t) \geq \phi(\min\{M(S x 2n+1, T x 2n+1, t), M(A x 2n+1, T x 2n+1, t), M(S x 2n+1, B x 2n+1, t)\})
\]

\[
= 1. \text{ If } \phi(\min\{M(S x 2n+1, T x 2n+1, t), M(A x 2n+1, T x 2n+1, t), M(S x 2n+1, B x 2n+1, t)\}) = 1 \text{ whenever } x = u \text{ and } y = x 2n+1 \text{ in contractive condition (iv) with } \alpha = 1, \text{ we get}
\]

\[
M(A u, B x 2n+1, t) \geq \phi(\min\{M(S x 2n+1, T x 2n+1, t), M(A x 2n+1, T x 2n+1, t), M(S x 2n+1, B x 2n+1, t)\}) = 1 \text{ whenever } x = u \text{ and } y = x 2n+1 \text{ in contractive condition (iv) with } \alpha = 1, \text{ we get}
\]

\[
M(A u, B x 2n+1, t) \geq \phi(\min\{M(S x 2n+1, T x 2n+1, t), M(A x 2n+1, T x 2n+1, t), M(S x 2n+1, B x 2n+1, t)\}) = 1 \text{ whenever } x = u \text{ and } y = x 2n+1 \text{ in contractive condition (iv) with } \alpha = 1, \text{ we get}
\]

\[
M(A u, B x 2n+1, t) \geq \phi(\min\{M(S x 2n+1, T x 2n+1, t), M(A x 2n+1, T x 2n+1, t), M(S x 2n+1, B x 2n+1, t)\}) = 1 \text{ whenever } x = u \text{ and } y = x 2n+1 \text{ in contractive condition (iv) with } \alpha = 1, \text{ we get}
\]

\[
M(A u, B x 2n+1, t) \geq \phi(\min\{M(S x 2n+1, T x 2n+1, t), M(A x 2n+1, T x 2n+1, t), M(S x 2n+1, B x 2n+1, t)\}) = 1 \text{ whenever } x = u \text{ and } y = x 2n+1 \text{ in contractive condition (iv) with } \alpha = 1, \text{ we get}
\]

\[
M(A u, B x 2n+1, t) \geq \phi(\min\{M(S x 2n+1, T x 2n+1, t), M(A x 2n+1, T x 2n+1, t), M(S x 2n+1, B x 2n+1, t)\}) = 1 \text{ whenever } x = u \text{ and } y = x 2n+1 \text{ in contractive condition (iv) with } \alpha = 1, \text{ we get}
\]

\[
M(A u, B x 2n+1, t) \geq \phi(\min\{M(S x 2n+1, T x 2n+1, t), M(A x 2n+1, T x 2n+1, t), M(S x 2n+1, B x 2n+1, t)\}) = 1 \text{ whenever } x = u \text{ and } y = x 2n+1 \text{ in contractive condition (iv) with } \alpha = 1, \text{ we get}
\]

\[
M(A u, B x 2n+1, t) \geq \phi(\min\{M(S x 2n+1, T x 2n+1, t), M(A x 2n+1, T x 2n+1, t), M(S x 2n+1, B x 2n+1, t)\}) = 1 \text{ whenever } x = u \text{ and } y = x 2n+1 \text{ in contractive condition (iv) with } \alpha = 1, \text{ we get}
\]

\[
M(A u, B x 2n+1, t) \geq \phi(\min\{M(S x 2n+1, T x 2n+1, t), M(A x 2n+1, T x 2n+1, t), M(S x 2n+1, B x 2n+1, t)\}) = 1 \text{ whenever } x = u \text{ and } y = x 2n+1 \text{ in contractive condition (iv) with } \alpha = 1, \text{ we get}
\]

\[
M(A u, B x 2n+1, t) \geq \phi(\min\{M(S x 2n+1, T x 2n+1, t), M(A x 2n+1, T x 2n+1, t), M(S x 2n+1, B x 2n+1, t)\}) = 1 \text{ whenever } x = u \text{ and } y = x 2n+1 \text{ in contractive condition (iv) with } \alpha = 1, \text{ we get}
\]
condition (iv) with \(\alpha = 1 \), one can show that \(Au = u \). Therefore, we have \(u = Au = Bu = Tu = Su \). Hence, the point \(u \) is a common fixed point of A, B, S and T.

3. Uniqueness

The uniqueness of the common fixed point of the mappings A, B, S and T be easily verified by using (iv). In fact, if \(u_0 \) be another fixed point for mappings A, B, S and T. Then, for \(\alpha = 1 \), we have

\[
M(u, u_0, t) = M(Au, Bu_0, t) \geq \phi(\min\{M(Su, Tu_0, t), M(Au, Tu_0, t), M(Su, Bu_0, t)\}) \\
\geq \phi(M(u, u_0, t)) > M(u, u_0, t),
\]

and hence, we get \(u = u_0 \). This completes the proof of the theorem.

References

Author Profile

Raghu Nandan Patel is in Department of Mathematics, Government Naveen College, Balrampur, Chhattisgarh, India

Manoj Kumar Tiwari is in Department of Mathematics, Government Girls Polytechnic College, Bilaspur, Chhattisgarh, India