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1. Introduction 
 
The concept of fuzzy sets was initiated by Zadeh [27] in 
1965 and the concept of fuzzy metric space was introduced 
by Kramosil and Michalek [12]. Grabiec [7] proved the 
contraction principle in the setting of the fuzzy metric space 
which was further generalization of results by 
Subrahmanyam [25] for a pair of commuting mappings. 
Also, George and Veeramani [6] modified the notion of 
fuzzy metric spaces with the help of continuous t-norm, by 
generalizing the concept of probabilistic metric space to 
fuzzy situation. Also, Jungck and Rhoades [10] defined a 
pair of self mappings to be weakly compatible if they 
commute at their coincidence points. Balasubramaniam 
et.al. [1] proved a fixed point theorem, which generalizes a 
result of Pant for fuzzy mappings in fuzzy metric space. Jha 
et.al.[9] has proved a common fixed point theorem for four 
self mappings in fuzzy metric space under the weak 
contractive conditions. Also, B. Singh and S. Jain [23] 
introduced the notion of semi-compatible maps in fuzzy 
metric space and compared this notion with the notion of 
compatible map, compatible map of type (α), compatible 
map of type () and obtained some fixed point theorems in 
complete fuzzy metric space in the sense of Grabiec [7]. As 
a generalization of fixed point results of Singh and Jain [23], 
Mishra et. al.[15] proved a fixed point theorems in complete 
fuzzy metric space by replacing continuity condition with 
reciprocally continuity maps. 
 
The purpose of this paper is to obtain a common fixed point 
theorem for compatible pair of self mappings in fuzzy metric 
space.  
 
We have used the following notions: 
 
DEFINITION 1.1([27]) Let X be any set. A fuzzy set A in 
X is a function with domain X and values in [0, 1]. 
 

DEFINITION 1.2([6]) A binary operation : [0, 1] × [0, 1] 
[0, 1] is called a continuous t-norm if, ([0, 1], ) is an 
abelian topological monoid with unit 1 such that a b ≤ c 
d whenever 
a ≤ c and b ≤ d, for all a, b, c, d in [0, 1]. 
For an example: a * b = ab, a * b = min {a, b}. 

DEFINITION 1.3([6]) The triplet (X, M, ) is called a 
fuzzy metric space (shortly, a FM-space)  
if, X is an arbitrary set, is a continuous t-norm and M is a 
fuzzy set on XX × [0, 1) satisfying 
the following conditions: for all x, y, z in X, and s, t > 0, 
(i) M(x, y, 0) = 0, M(x, y, t) > 0; 
(ii) M(x, y, t) = 1 for all t > 0 if and only if x = y, 
(iii) M(x, y, t) = M(y, x, t), 
(iv) M(x, y, t) M(y, z, s) ≤ M(x, z, t + s), 
(v) M(x, y, ·) : [0, ∞) [0, 1] is left continuous. 
 
In this case, M is called a fuzzy metric on X and the function 
M(x, y, t) denotes the degree of nearness between x and y 
with respect to t. 
 
Also, we consider the following condition in the fuzzy 
metric space (X, M, ): 
(vi) limt∞M(x, y, t) = 1, for all x, y X. 
 
It is important to note that every metric space (X, d) induces 
a fuzzy metric space (X,M, ) where a b = min {a, b} and 
for all a, b X, we have 𝑀(𝑥, 𝑦, 𝑡) = 𝑡

𝑡+𝑑(𝑥,𝑦)
 , for all t > 0, 

and M(x, y, 0) = 0, so-called the fuzzy metric space induced 
by the metric d. 
 
DEFINITION 1.4([6]) A sequence {xn} in a fuzzy metric 
space (X, M, ) is called a Cauchy sequence if, limn∞ 
M(xn+p, xn, t) = 1 for every t > 0 and for each p > 0. 
 
A fuzzy metric space (X, M, ) is complete if, every Cauchy 
sequence in X converges in X. 
 

DEFINITION 1.5([6]) A sequence {xn} in a fuzzy metric 
space (X, M, ) is said to be convergent to x in X if, 
limn∞ M(xn, x, t) = 1, for each t > 0. 
 
It is noted that since is continuous, it follows from the 
condition (iv) of Definition (1.3.) that the limit of a sequence 
in a fuzzy metric space is unique. 
 

DEFINITION 1.6([1]) Two self mappings A and B of a 
fuzzy metric space (X, M, ) are said to be compatible if, 
limn∞ M(ABxn, BAxn, t) = 1 whenever {xn} is a 
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sequence such that lim n∞ Axn = lim n∞ Bxn = p, for 
some p in X. 
 

LEMMA 1.11([20]) Let (X, M, ) be a fuzzy metric space. 
If there exists k (0, 1) such that M(x, y, kt) ≥ M(x, y, t) 
then x = y. 
 

PROPOSITION 1.12: Let A and B be compatible, self 
mappings of a fuzzy metric space X, 
(1) If Ay = By then ABy = Bay. 
(2) If Axn , Bxn  y, for some y is X then  
 (a) BAxn  Ay if A is continuous. 
(b) If A and B are continuous at y then Ay = By and ABy = 
BAy.  
 

PROOF: (1) Let Ay = By and {xn} be a sequence in X such 
that xn = y for all n. Then Axn , Bxn  Ay. Now by the 
compatibility of A and B, we have  
 M(ABy, BAy, t) = M(ABxn, BAxn, t) = 1 which yields 
ABy = BAy.  
 (2) If Axn , Bxn  y, for some y is X then 
(a) By the continuity of A, ABxn  Ay and by 
compatibility of A, B  
M(ABxn, BAxn, t) = 1 as n∞, which yields BAxn  Ay. 
(b) If A and B are continuous then from (a) we have BAxn 
 Ay. But by the continuity of B, BAxn  By. Thus by 
uniqueness of the limit Ay = By. Hence ABy = BAy from 
(1).  
 

2. Main Results 
 

THEOREM 2.1. Let (X, M, ) be a complete fuzzy metric 
space with additional condition (vi) and with a a ≥ a for all 
a [0, 1]. Let A, B, S and T be mappings from X into itself 
such that 
(i) A(X) T(X), B(X) S(X) 
(ii) One of the A, B, S or T is continuous, 
(iii) (A, S) and ( B, T) are compatible pairs of mappings, 
(iv) M(Ax, By, t) ≥ (min{M(Sx, Ty, t), M(Ax, Ty, t), 
M(Sx, By, (2 − α)t ), }) for all x, y X, α(0, 2) and t > 0. 
where  : [0, 1] [0, 1] is a continuous function such that 
(t) > t for some 0 < t < 1.Then A, B, S and T have a unique 
common fixed point in X. 
 

PROOF: Let x0 X be an arbitrary point. Then, since A(X) 
T(X), B(X) S(X), there exists x1, x2 X such that Ax0 
= Tx1 and Bx1 = Sx2. Inductively, we construct the 
sequences {yn} and {xn} in X such that y2n = Ax2n = 
Tx2n+1 and y2n+1 = Bx2n+1 = Sx2n+2, for n = 0, 1, 2, ....  
Now, we put α = 1 − q with q (0, 1) in (iv), we have  
M(y2n, y2n+1, t) = M(Ax2n, Bx2n+1, t)  
 ≥ ( min{M(Sx2n, Tx2n+1, t), M(Ax2n, Tx2n+1, (1 − q)t), 
M(Sx2n, Bx2n+1, (1 + q)t)}). 
That is, 
M(y2n, y2n+1, t) ≥  (min{ M(y2n−1, y2n, t), M(y2n, y2n+1, 
t), M(y2n−1, y2n+1, (1 + q)t)}) 
≥  (min{M(y2n−1, y2n, t), M(y2n, y2n+1, t), M(y2n−1, y2n, 
t), M(y2n−1, y2n+1, qt)}) 
≥ M(y2n−1, y2n, t) M(y2n, y2n+1, t) M(y2n, y2n+1, qt). 
Since t-norm is continuous, letting q 1, we have 

M(y2n, y2n+1, t) ≥  (min{M(y2n−1, y2n, t), M(y2n, y2n+1, 
t), M(y2n, y2n+1, t)} 
≥  (min{M(y2n−1, y2n, t), M(y2n, y2n+1, t)}). 
It follows that, M(y2n, y2n+1, t) > M(y2n−1, y2n, t), since  
(t) > t for each 0 < t < 1. 
Similarly, M(y2n+1, y2n+2, t) > M(y2n, y2n+1, t). 
Therefore, in general, we have 
M(yn, yn+1, t) ≥  (M(yn−1, yn, t)) > M(yn−1, yn, t). 
Therefore, {M(yn, yn+1, t)} is an increasing sequence of 
positive real numbers in [0, 1] and tends to a limit, say ≤ 1. 
We claim that = 1. If < 1, then M(yn, yn+1, t) ≥  
(M(yn−1, yn, t)). 
So, on letting n ∞, we get limn∞ M(yn, yn+1, t) ≥ 
(limn∞ M(yn, yn+1, t)) 
that is, ≥ r() > , a contradiction. Thus, we have = 1. 
Now, for any positive integer p, we have 
M(yn, yn+p, t) ≥ M(yn, yn+1, t) M(yn+1, yn+2, t/p) ... 
M(yn+p−1, yn+p, t/p). 
Letting n ∞, we get limn∞ M(yn, yn+p, t) ≥ 1 1 ... 
1 = 1. 
 
Thus, we have limn∞ M(yn, yn+p, t) = 1. Hence, {yn} is a 
Cauchy sequence in X. Since X is complete metric space, so 
the sequence {yn} converges to a point u (say) in X and 
consequently, the subsequences {Ax2n}, {Sx2n}, {Tx2n+1} 
and {Bx2n+1} also converges to u. 
 
We first consider the case when (A, S) and (B, T) are 
compatible maps. Since A and S are compatible maps, so we 
have limn∞ M(ASxn, SAxn, t) = 1 whenever {xn} is a 
sequence such that lim n∞ Axn = lim n∞ Sxn = u, for 
some u in X. Therefore, we get Au = Su. And also B and T 
are compatible maps, so we have limn∞ M(BTxn, TBxn, 
t) = 1 whenever {xn} is a sequence such that lim n∞ Bxn 
= lim n∞ Txn = u, for some u in X. 
 
We claim that Au = u. For this, suppose that Au u. 
 
Then, setting x = u and y = x2n+1 in contractive condition 
(iv) with α = 1, we get 
M(Au, Bx2n+1, t) ≥ (min{ M(Su, Tx2n+1, t), M(Au, 
Tx2n+1, t), M(Su, Bx2n+1, t)}). 
Letting n ∞, we get M(Au, u, t) ≥ r(M(Au, u, t)) > M(Au, 
u, t), which implies that u = Au. 
Thus, we have u = Au = Su. Since A(X) T(X), so there 
exists v in X such that u = Au = Tv. 
Therefore, setting x = x2n and y = v in contractive condition 
(iv) with α = 1, we get 
M(Ax2n, Bv, t) ≥ (min{ M(Sx2n, Tv, t), M(Ax2n, Tv, t), 
M(Sx2n, Bv, t)}). 
Letting n ∞, we get M(Au, Bv, t) ≥ (M(Au, Bv, t)) > 
M(Au, Bv, t), which implies that u = Bv. 
Thus, we have u = Bv = Tv. Therefore, we get u = Au = Su 
= Bv = Tv. 
Now, since u = Bv = Tv, so by the compatibility of (B, T), it 
follows that BTv = TBv and so we get Bu = BTv = TBv = 
Tu. Thus, from the contractive condition (iv) with α = 1, we 
have 
M(Au, Bu, t) ≥ (min{ M(Su, Tu, t), M(Au, Tu, t), 
M(Su,Bu, t)}), that is, M(u, Bu, t) > M(u, Bu, t), which is a 
contradiction. This implies that u = Bu. Similarly, using 
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condition (iv) with α = 1, one can show that Au = u. 
Therefore, we have u = Au = Bu = Tu = Su. Hence, the point 
u is a common fixed point of A, B, S and T. 
 
3. Uniqueness 
 
The uniqueness of a common fixed point of the mappings A, 
B, S and T be easily verified by using (iv). In fact, if u0 be 
another fixed point for mappings A, B, S and T. Then, for α 
= 1, we have 
M(u, u0, t) = M(Au, Bu0, t) ≥ (min{M(Su, Tu0, t), M(Au, 
Tu0, t), M(Su,Bu0, t)}), 
 ≥ (M(u, u0, t)) > M(u, u0, t), and hence, we get u = u0. 
This completes the proof of the theorem. 
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