
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 11, November 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

A Survey on Extended MI technique for Edit
Recommendation using Hybrid History Mining and

Relevance Feedback

Shradha P. Patil
1
, B. Padmavathi

2

1P. G. Student, Department of Computer Engineering, GHRCEM, Wagholi, Pune, India

2Professor, Department of Computer Engineering, GHRCEM, Wagholi, Pune, India

Abstract: Now a day’s use of recommendation systems while developing software increasing in order to speed up the process of
software development by software developers. Accurate recommendations leads to successful, faster, efficient development, but
inaccurate recommendations can lead to inappropriate, missed deadline software development. To guide programmers, researchers
have developed history-based recommendation systems following two approaches either by mining view history or by mining edit
history. However these methods failed to achieve the accuracy, flexibility and early recommendations. These problems are overcome by
recently presented method called MI which is recommendation system extending ROSE. But the limitation of MI is that no end user
satisfaction is taken into the considerations, and hence there is always scope for improvement in accuracy. In this system we are
presenting EMI (Extended MI) technique in which we are improving the accuracy by relevance feedback method, in which log of
feedbacks should be maintained and based on end users feedbacks, proposed system can refine and regenerate more accurate
recommendations next time for same query with less time.

Keywords: Association rules, Context formation, Data mining, Mining programmer interaction histories, ROSE

1. Introduction

The main goal of using recommendation systems is to gain
the productivity of developer by recommending files to edit.
Association rules mining is done for such in software
revision histories. On the other hand, mining coarse-grained
rules using only edit histories produces recommendations
with low accuracy, and can only generate recommendations
after a developer edits a file. The existing methods presented
are falls in two categories such as view history based mining
or edit history based mining. But due to the less accuracy,
more time for generating recommendations, there is always
research problem in this domain whether which history is
better to mine. To overcome these limitations, recently MI
technique is presented to produce recommendations from
both view and edit histories. This method practically showing
better accuracy, flexibility and speed, but there is no end user
satisfaction achieved with this method. This becomes
research challenge in this domain. So we have proposed
relevance feedback method to achieve end user satisfaction.
Using detailed edit and view histories to recommend files to
edit produces the following advantages:

a) Accurate recommendations: The approach that considers

viewed file provides more accurate recommendation over
approach that considers only edited files.

b) Early recommendations: Programmer can recognize files
to edit early, even though he has not edited a single file
before

c) Flexible recommendations: When recommendations
generate based on viewed files the recommendations
change in response to programmer’s exploration paths.

2. Related Work

R. Robbes and M. Lanza, “Characterizing and
understanding development Sessions,”-To reconstruct
development sessions we have implemented an evolution
monitoring prototype which records all semantic change
performed by the user so, to understand and characterize the
development sessions we used the fine-grained information
as they were carried out on two object-oriented systems[1].

M. Kim and D. Notkin, “Discovering and representing
systematic code changes,” - We proposed a tool - Logical
Structural Diff that assumes systematic structural differences
as logic rules. Logical Structural Diff form systematic change
pattern by grouping code changes regardless of their
distribution [2].

R. Agrawal, T. Imielinski and A. N. Swami, “Mining
association rules between sets of items in large databases,”
presents an efficient algorithms which develops all significant
association rules between items in the database as well as to
solve the problem of mining a cluster of basket data type
transactions for association rules[4].

T. Zimmermann, P. Weissgerber, S. Diehl and A. Zeller,
“Mining version histories to guide code changes,” - To
guide programmers along with related changes we apply data
mining to version histories. We are using the set of existing
changes which suggest and predict the similar further
changes, item coupling that is invisible by program analysis
and prohibit errors that occurs due to incomplete changes.
After first change, our ROSE technique can correctly predict
26% of new files to be changed [5].

Paper ID: NOV151715 2507

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 11, November 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

A. T. T. Ying, G. C. Murphy, R. Ng and M. C. Chu-Carroll, -
“Predicting source code changes by mining change history,”
- To help a developer we have described new approach of
mining revision history for identifying appropriate source
code for a change task. We are applying our approach to two
open-source systems, Eclipse and Mozilla, that provide
useful recommendations and then evaluating the results based
on the predictions and likely interest to a developer.
Moreover to provide evidence for our hypothesis, we have
developed a set of interestingness criteria for assessing the
utility of recommendations that can be used in qualitative
analyses of source code recommendations [6].

3. Proposed Work

To recommend files to edit by using the records of viewed
files, MI mines programmer interaction histories that are
history database. As shown in Fig. 1, MI mines interaction
traces and finds association rules using the current context.
To improve the accuracy of recommendation we are using
relevance feedback method, in which log of feedbacks should
be maintained based on end users feedbacks. If the end users
are satisfied with recommendation generated by MI , it sends
that to the programmer else proposed system can refine and

regenerate more accurate recommendations next time for
same query with less time. The fundamental part of the
recommendation system is the context. For recommendation
system, context characterizes the information about the user,
their work and environment (e.g., viewed files), that are
present at the time of recommendation and is used as a query
at the time of further recommendation. To form the context
we are using context formation algorithm.

3.1 MI (Mining Programmer interaction Histories)

MI extending ROSE which is an approach that mines
software revision histories. We have revised ROSE to mine
programmer interaction histories. The revised ROSE forms a
context using only edited files by mining the association rules
from edited files in programmer interaction histories. To
recommend files to edit we have used this version of ROSE
to enclose viewed files, we have proposed new approach MI,
for mining association rules in programmer interaction
histories (MI)[3]. MI forming a hybrid context of viewed and
edited files by mining the association rules from both viewed
and edited files. This MI approach can use several methods
to form a context from edited and viewed files.

Figure 1: Architecture of the proposed recommendation system EMI

The limitation of MI is that no end user satisfaction is taken
into the considerations, and hence there is always scope for
improvement in accuracy. So we have proposed extended MI
technique in which the end user can send the feedback. The
log of feedback is maintained. We are applying filtering
technique on log record so that it can refine and regenerate
more accurate recommendation next time for the same query
in less time.

3.2 Interaction Traces

An interaction trace is information consists of the records
that define a programmer’s actions (i.e. views and edits) and
files on which the actions were taken.

An interaction trace Tk is transformed into a pair of sets Tk =
(Vk, Ek), where Vk is the set of viewed files in interaction
trace Tk.
Vk = {v1, ...,vn} and Ek is the set of edited files in interaction
trace Tk .

The collected information of interaction traces can be
expressed as History DB = {Tk|1 ≤ k ≤ i-1}.

3.3 Context Formation

Conceptually, a context specifies information which can be
used to describe the situation of a current user. In a
recommendation system, a context forms a query, which
generates a recommendation. In EMI, a context is formed
from current actions of a programmer’s. When the current
programmer is carrying out a task m, a context is created

Paper ID: NOV151715 2508

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 11, November 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

from the last files edited and viewed by the current
programmer from each time-point in Tm. If the current
programmer keep on viewing and editing files, the context
get change. The context C can be defined as (Vc, Ec), where
Vc is a set of the last viewed v files of a current programmer.

Vc = {v1, ..., vn}, and Ec is a set of the last edited files by
programmer. Ec = {e1, ..., en} at each timepoint.

4. Scope of Work

Main goal of this system is to present improved method for
recommendation systems using explicit log based relevance
feedback scheme.
 To present literature review of different techniques of

recommendation systems.
 To present limitations of existing techniques.
 To present proposed algorithms and framework.
 To present practical analysis and performance evaluation

5. Conclusion

In this work, we have investigated how the use of view
information collected from programmer interaction histories,
can help provide detailed context to programmer to get more
accurate, earlier and more flexible edit recommendations. To
evaluate this, we proposed new approach MI, which extends
previous approach ROSE, by moreover considering the
records of viewed files. Additionally we have presented
extended MI technique to improve the accuracy by relevance
feedback method which maintains the log of feedback's by
the end users.

References

[1] R. Robbes and M. Lanza, “Characterizing and

understanding development Sessions,” Proc. 15th IEEE
International Conf. on Program Comprehension (ICPC
'07), IEEE Computer Society, Washington, DC, USA,
2007, pp. 155-166.

[2] M. Kim and D. Notkin, “Discovering and representing
systematic code changes,” Proc. 31st International Conf.
on Software Engineering (ICSE '09), IEEE Computer
Society, Washington, DC, USA, 2009, pp. 309-319.

[3] Seonah Lee, Sungwon Kang, Sunghun Kim, and Matt
Staats “The Impact of View Histories on Edit
Recommendations”, IEEE Transactions on Software
Engineering,(Volume:41 , Issue: 3),March 1 2015

[4] R. Agrawal, T. Imielinski and A. N. Swami, “Mining
association rules between sets of items in large
databases,” - Proc. ACM D.C., May 26-28, 1993, ACM
Press, pp. 20–216.

[5] T. Zimmermann, P. Weissgerber, S. Diehl and A. Zeller,
“Mining version histories to guide code changes,” IEEE
Transactions on Software Engineering, 31(6), 2005, pp.
429–445.

[6] A. T. T. Ying, G. C. Murphy, R. Ng and M. C. Chu-
Carroll, “Predicting source code changes by mining
change history,” IEEE Transactions on Software
Engineering, 30, 2004, pp. 574–586.

Paper ID: NOV151715 2509

