Survey on an Efficient Data Aggregation without Data Loss with Secure Routing in Heterogeneous Wireless Sensor Networks

Shubhangi Gaikwad¹, S. V. Todkari²

¹ME Computer Engineering, Jayawantrao Sawant College of Engineering, Hadapsar Pune-28, Savitribai Phule Pune University, Pune, India.

²Proessor and Head of Department, IT Engineering, IEEE Member, Jayawantrao Sawant College of Engineering, Hadapsar Pune28, Savitribai Phule Pune University, Pune, India.

Abstract: They proposed Energy expense of transmitting a solitary piece of data is around the same as that required for preparing a thousand operations in a run of the refine sensor hub. Along these lines, a reasonable approach to drag out a remote sensor system lifetime is to decrease the sensor vitality utilization in information transmissions. Information assembly is an effective approach to reduce vitality utilization on sensors. In this paper, they propose a commonsense secure information assembly plan, Sen-SDA, in view of an added substance homomorphism encryption plan, a personality based mark plan, and a bunch check system with a calculation for sifting infused false information. At that point examine the achievability of our plan utilizing ease microcontrollers picking two mainstream IEEE 802.15.4-agreeable remote sensor system equipment stages, MICAz and Tmote Sky, utilized as a part of genuine organization.

Keywords: Wireless Sensor Networks, Data Aggregation, HE Scheme.

1. Introduction

Remote sensor systems (WSNs) are remote systems that involve a substantial number of spatially appropriated little self-directed gadgets agreeably checking natural conditions and sending the gathered information to a war room utilizing remote channels. This little gadget, called a sensor hub, comprises of handling capacity (one or more microcontrollers, CPUs or DSP chips), may contain various sorts of memory (project, information, and blaze recollections), has a RF handset (for the most part with a solitary Omni-directional receiving wire), has a force source (e.g., batteries and sun Oriented cells), and oblige different sensors and actuators. As of late, WSNs have been broadly perceived as a promising innovation that can improve different parts of today's electric force frameworks, checking portable social insurance framework and savvy transportation frameworks.

The dense and ad-hoc deployment in hazardous environment and unattended nature of WSNs make it difficult to change or recharge the node batteries. The crucial question is "how to Prolong the network lifetime to such a long time?"

Maximizing the lifetime of the network through minimizing the energy is an important challenge in WSNs. Experimental measurements have shown that generally data transmission is very expensive in terms of energy consumption (EC), while data processing consumes significantly less. Thus, a practical way to prolong the WSN lifetime is to reduce the sensor energy consumption in data transmissions.

Information collection is a productive approach to minimize vitality utilization on sensors; however it additionally makes new security challenges. A homomorphism encryption (HE) plan gives an answer for secure information total. It makes it

conceivable to total n cipher texts into a solitary cipher text without utilizing any mystery keys protecting crucial math operations furthermore, classification.

2. Related Work

Kyung-Ah Shim [1] studied that, data gathering is a gainful way to deal with minimize essentialness usage on sensors, be that as it may it moreover makes new security challenges. A homomorphism encryption (HE) plan gives an answer for secure data complete. It makes it possible to all out n cipher texts into a single cipher text without using any puzzle keys securing vital math operations besides, characterization.

D. Boneh and M. Franklin [2] presented a short mark plan in view of the Computational Diffie-Hellman supposition on certain elliptic and hyper-elliptic bends. For standard security parameters, the mark length is about a large portion of that of a DSA signature with a comparative level of security. Our short mark plan is intended for frameworks where marks are written in by a human or are sent over a low-transfer speed channel. They studied various properties of our mark plan, for example, signature total and clump check.

D. Boneh [4] demonstrated that, propose a completely utilitarian personality based encryption plan (IBE). The plan has picked cipher text security in the irregular prophet model accepting a variation of the computational De- Hellman issue. Our framework depends on bilinear maps between gatherings. The Weil matching on elliptic bends is a case of such a guide. They gave exact dentitions for secure character based encryption plans and give a few applications for such frameworks.

C. Castelluccia [5] presented a remote sensor systems (WSNs) are specially appointed systems made out of modest

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

gadgets with restricted calculation furthermore, vitality limits. For such gadgets, information transmission is an extremely vitality devouring operation. It hence gets to be fundamental to the lifetime of a WSN to minimize the quantity of bits sent by every gadget. One well known methodology is to total sensor information (e.g., by including) along the way from sensors to the sink. Collection turns out to be particularly testing if end-to-end) security in the middle of sensors and the sink is required. In this paper, author proposed a basic and provably secure additively homomorphism stream figure that permits efficient accumulation of encoded information. The new figure just uses particular increases (with little module) what's more, is along these lines extremely appropriate for gadgets. CPU-compelled They demonstrated that accumulation taking into account this figure can be utilized to efficiently process factual qualities for example, mean, difference and standard deviation of detected information, while accomplishing significant data transfer capacity pick up.

J. Domingo-Ferrer [6] studied, Provably Secure Additive and Multiplicative Privacy Homomorphism, Protection homeomorphisms (PHs) are encryption changes mapping an arrangement of operations on clear text to another arrangement of operations on cipher text. In the event that expansion is one of the cipher text operations, at that point it has been demonstrated that a PH is unstable against a picked clear text assault. Hence, a PH permitting full number juggling on encoded information can be best case scenario secure against known-clear text assaults. They display one such PH (none was known as such) which can be demonstrated secure against known-clear text assaults, the length of the cipher text space is much bigger than the clear text space. A few applications to assignment of touchy figuring and information and to e-betting are quickly illustrated.

J. Girao [7] proposed, Directing in remote sensor systems is not quite the same as that in rational portable specially appointed systems. It for the most part needs to bolster reverse multicast activity to one specific destination in a multichip way. For such a correspondence example, end-toend encryption is a testing issue. To spare the general vitality assets of the system, detected information should be united and collected on its way to the last destination. They show a methodology that 1) disguises detected information end-to-end by 2) as yet giving proficient and adaptable insystem information collection. The collecting transitional hubs are not required to work on the detected plaintext information. They apply a specific class of encryption changes and examine systems for figuring the collection capacities "normal" and "development recognition." Author demonstrated that the methodology is plausible for the class of "going down" directing conventions. They consider the danger of undermined sensor hubs by proposing a key predistribution calculation that confines an aggressor's increase and appear how key redistribution and a key-ID touchy "going down" directing convention expand the power and unwavering quality of the joined spine.

V. C. Gungor observed in paper [8], that Minimizing force utilization is urgent in battery force restricted secure remote portable systems. In this paper, the author (a) present an equipment/programming set-up to measure the battery power utilization of encryption calculations through genuine living experimentation, (b) in view of the prowled information propose scientific models to catch the connections between force utilization and security, and (c) formulate and understand security augmentation subject to power imperatives. Numerical results are introduced to outline the increases that can be accomplished in utilizing arrangements of the proposed security boost issues subject to power requirements.

Sr.no	Paper Name	Technique	Advantage	Disadvantage	Result
1	Fast Batch Verification	Focusing specifically on	Done very fast; in	Recomposing is done	Putting oneself above specific
	for Modular	digital signatures, use of	particular, They show how	so takes time and slows	applications one can actually
	Exponentiation	batching	to screen a sequence of	down the operation	and general speed-up tools that
	and Digital		RSA signatures at the cost		apply to them;
	Signatures[3]		of one RSA verification		in particular, improve some of
			plus hashing.		the mentioned works
2	Identity-Based	Bilinear map scheme is	can be built from any	It takes long time for	Identity based encryption is to
	Encryption from the	used, IBE system is used	bilinear map	each private key	help the deployment of a
	Weil Pairing[4]	fully		generation request	public key infrastructure.
3	Efficient Aggregation	Propose a simple and	Simple and secure	limited computation	That aggregation based on this
	of encrypted data in	provably secure	homomorphic stream	and energy capacities,	cipher can be used to
	Wireless Sensor	Additively	cipher that allows efficient	communication	efficiently compute statistical
	Networks[5]	homomorphism stream	aggregation of encrypted	efficiency issues	values Such as mean, variance
		cipher that allows	data		and standard deviation of
		efficient aggregation of			sensed data, while achieving
		encrypted data.			significant bandwidth gain.
4	A Provably Secure	Gambling, and more	Data delegation has	The equality predicate	At decryption
	Additive and	specifically electronic	stronger security	is not preserved, and	time, knowledge of the key
	Multiplicative	poker, is another recent	requirements than	thus comparisons for	allows the classified level to
	Privacy	application	computing delegation. In	equality	map encrypted
	Homomorphism[6]	of the PH	computing delegation the	cannot be done at an	
			data handler only sees	unclassified level based	
			cipher text.	on encrypted data	
5	Concealed Data	conceals sensed data end-	To save the overall energy	multicast traffic to one	using
	Aggregation for	to-end by still providing	resources of the network,	particular destination in	this scheme for the WSN data

Licensed Under Creative Commons Attribution CC BY

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Reverse Multicast	efficient and flexible in-	sensed data needs to be	a multichip manner	aggregation scenario in a
Traffic in	network data aggregation	consolidated and	-	higher level of security than
Sensor Networks:		Aggregated on its way to		solutions based on hop-by hop
Encryption, Key		the final destination.		encryption
Distribution, and				
Routing Adaptation[7]				

3. Architecture View

Figure 1.1: System Architecture

4. Conclusion

Cryptographic primitives are principal building squares for security conventions. It is not all that much to say that the determination furthermore, incorporation of suitable cryptographic primitives into the security plans decides the proficiency furthermore, Vitality preservation of the entire plan. In this paper, we demonstrated to incorporate an arrangement of the cryptographic primitives into a SDA plan in HSNs to accomplish security necessities. They proposed a handy SDA plan, Sen.-SDA, in light of the mix of the HE plot, ECEl Gamalb also, the blending free IBS plan, mID-Sch and the bunch check with BQS for discovering invalid marks in heterogeneous grouped WSNs. Sen-SDA gives end-to-end secrecy and jump by-bounce validation. Autor decided the extent of a bunch depending the proportion of the quantity of invalid marks to minimize the effectiveness of CHs' bunch checks.

References

- [1] Kyung-Ah Shim, Member, IEEE and Cheol-Min Park, Member, IEEE "A Secure Data Aggregation Scheme Based on Appropriate Cryptographic Primitives in Heterogeneous Wireless Sensor Networks" IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 8, AUGUST 2015
- [2] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, "Aggregate and verifiably encrypted signatures from bilinear maps," in Proc. 22nd Int. Conf. Theory Appl. Cryptograph. Techn., 2003, pp. 416–432.

- [3] M. Bellare, J. Garay, and T. Rabin, "Fast batch verification for modular exponentiation and digital signatures," in Proc. Adv. Cryptol. Int. Conf. Theory Appl. Cryptograph. Techn., 1998, pp. 236–250.
- [4] D. Boneh and M. Franklin, "Identity-based encryption from the Weil pairing," SIAM J.Comput., vol. 32, no. 3, pp. 586–615, 2003.
- [5] C. Castelluccia, E. Mykletun, and G. Tsudik, "Efficient aggregation of encrypted data in wireless sensor network, MobiQuitous '05," pp. 1–9, 2005.
- [6] J. Domingo-Ferrer, "A provably secure additive and multiplicative privacy homomorphism," in Proc. 5th Int. Conf. Inf. Security, 2002, pp. 471–483.
- [7] J. Girao, D. Westhoff, and M. Schneider, "CDA: Concealed data aggregation for reverse multicast traffic wireless sensor networks," in Proc. IEEE Int. Conf. Commun., 2005, pp. 3044–3049.
- [8] V. C. Gungor, B. Lu, and G. P. Hancke, "Opportunities and challenges of wireless sensor networks in smart grid," IEEE Trans. Ind. Electron., vol. 57, no. 10, pp. 3557–3564, Oct. 2010.

Author Profile

Ms.Shubhangi Gaikwad, is currently pursuing M.E (Computer) from Department of Computer Engineering, Jayawantrao Sawant College of Engineering, Pune, India. Savitribai Phule Pune University, Pune, Maharashtra, India -411007. She received her B.E (I.T) Degree from Jayawantrao

Sawant College of Engineering, Savitribai Phule Pune University, Pune, Maharashtra, India -411007. Her area of interest is network security, WSN.

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Prof. S. V. Todkari, received his M.E. (I.T) Degree from MIT COE KOTHRUD PUNE, Maharashtra, India. He received his B.E (CSE) Degree from college of Engineering Ambajogai, Maharashtra, India. He is currently working as H.O.D at Department of Technology Engineering in Javawantrao Sawant

Information Technology Engineering, in Jayawantrao Sawant College of Engineering, Savitribai Phule Pune University, Pune, Maharashtra, India -411007. His area of interest is Wireless sensor network.