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Abstract: An important problem in toxicology, teratology, consumers purchasing behavior, drinking behavior of alcohol, in studies of
dental caries in children and other similar fields is to compare proportions of certain characteristic in several groups. A special case is to
compare the proportions in a control group with that in a treatment group. However, these proportions often exhibit variation greater
than predicted by a simple binomial model. Continuous distribution defined on the standard unit interval is used to test homogeneity of
proportion as one way of handling over-dispersion of the binomial distribution. The Kumaraswamy-Binomial (KB) distribution, Beta-
Binomial (BB) distribution and the new McDonald Generalized Beta-Binomial (McGBB) distributions are prominent members of
Binomial mixture distribution. The new McDonald Generalized Beta-Binomial distribution model has shown to give better fit than the
Kumaraswamy-Binomial distribution and Beta-Binomial distribution on both the simulation study and the real data set in handling
binomial outcome data. In this paper we focus on testing homogeneity of proportions in presence the new McGBB distribution over-

dispersion by deriving the C () tests using the Quasi-likelihood and the Extended Quasi-likelihood estimating functions. The
performance of the derived C () tests are better when compared, through simulations, with the Likelihood ratio test.

Keywords: Common Over-dispersion, Likelihood Ratio statistic, Simulation, Quasi-likelihood

1. Introduction 1992, 1994). This is because C() statistics require

estimates under the null hypothesis, it often produces a
Data in form of proportions arise in Toxicology and other  statistic which is simple to calculate, it has been found
similar fields. An important problem is to compare  yseful for detecting over-dispersion in binomial and poisson
proportion of a certain characteristic in several groups.  data (Paul et al., 1989; Dean and Lawless, 1990). It also
However, these proportions often exhibit variation greater  often maintains at least approximately, a pre-assigned level
than predicted by a simple binomial model (Williams, of significance (Bartoo and Puri, 1967). It is locally

1975)The Superiority of the McGBB distribution to BB asymptotically most powerful (thler and Puri, 1966,
distribution in handling over-dispersion has been shown Moran, 1970).

(Chandbroseet al., 2013).A number of procedures are
available for testing homogeneity of the proportions in  The paper is organized as follows:In section 2 we present the
presence of over-dispersion. Of these, the Likelihood ratio

. e derivation of the C(cr) statistics, section 3 simulation and
(LR) test has found prominence in literature.

section 4 results and discussion for comparing the size and

The purpose of this paper is to derive C(&) (Neyman, ~ POWer of the C(cx) statistics with the LR statistic.
1959)statistics CQ and C - based onQuasi-likelihood and C(a)
2. The Test Statistics

Extended Quasi-likelihood estimates respectively,for testing
homogeneity of the proportions in presence of McGBBover-

i th
dispersion. C(c)test is based on the residual of a Suppose that there are S treatment groups and that the |

regression of the score function for the parameter(s) of ~ &roup has K; litters. The proportion responding in the j-th

interest on the nuisance parameters. The nuisance Y

. . . 1 - -

litter of i-th group ls—J, ] = 1,...,ki ;1=1,...,8.
ij

parameters are then replaced by \/ﬁ consistent estimators.If
the nuisance parameters are replaced by their maximum

likelihood estimators (mle’s), which are \/ﬁ consistent, the 2.1 McDonald Generalized Beta-Binomial distribution
C() statistic reduces to the score statistic (Rao, 1948).
The probability mass function of the new McGBB (a, B, v)

The C( o) statistichas been widely used as a test statistics C R
distribution is given by,

(Neyman and Scott, 1966; Moran, 1973; Paul, 1982; Tarone,
1985; Barnwal and Paul, 1988; Boos, 1992; Paul and Islam,

My =Yy, ]
Puccse (Y&, B,7) = = -1’ "Bl = e
s f1) (yJB(a,ﬂ)jZo:( : L J ] (7+a+7ﬂJ

(1)
where ¥ = 0,1,....,n and a, B,y >0
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Then the mean and variance of the new McGBB (n, a, B, Y)
distribution are given by,

E(Y)=nzandvar(Y)=nz(1-7){l1+(n-1)p},
respectively where
Blasn))
ofety)

B(a+ﬁ,%/) B(a+ﬁ,%/)
ez o))
B(a+,8,%/) i B(a+,8,%/) 2
o[ ) ) | 8l )

where 0O is the overdispersion parameter of the new McGBB

distribution

2.2 The C(a) test statistic based on the quasi-likelihood(
Co)
The Quasi-likelihood is based on the knowledge of the first

two moments of the random variable Z = Y (Wedderburn,

1974).

EZ)=nr, Var(Z):%_ﬂ)

This specification of mean and variance coincides with those
based on the new McGBB model. The Quasi-likelihood for
an observation Z with the above mean and variance is given

(Z-t)n
by Q(Z,7,¢)= J.zt 1-t){1+(n-1)¢}

the data under con51derat10n becomes

T B (1-m)
Zol - 1)¢}{ g(fj“n yﬂog{(l—Z)H

Var(y_) 1
oferny) 00
B(a,%/) (n_l)

dt which for

where 7 =

B, = (B,
{I+(n-1)¢},0< 7 <1 and ( j<¢<1 3
n E[ 0

where y is a discrete random variable, n is the number of
trials, ¢ is the over-dispersion parameter.

Define ﬂ2(21,12,23)=(a,ﬂ,]/).Then let
Y, = aQ ,i=1..,S-1
oa;’
and
Q
=——, k=123
2 o4,

To make things simple we assume homogenous and under
this assumption we wish to test the hypothesis

H,:7 =

..= g against H, :not all 7,'Sare the same.

Now, let ﬂj be some \/M consistent estimator of A under
the null hypothesis. Then the C(O{)test is based on

5,(4)=

where  f3,;, f,; and [ are the partial regression
coefficients of W ande,, Y, ande,and¥,and @,
respectively.  The  variance-covariance  matrix  of

S(A)={S,(2)ssS,,(2)}'is D—AB'A'and the

regression  coefficients [ = ( B, 5, ,83) = AB™' where
B :(ﬁll"”’ﬂlS—l)ﬂ yo :(ﬂZI""’ﬂZS—l)’
s Bost) -
- D,=E| ——|, i,t=1..,5-1
0404,

Using A in S,A,Band D, theC(O{)test statistic is
-1

given by S'(D—AB%A') S, which is approximately

distributed as chi-square with S —ldegrees of freedom.

Using the Quasi log-likelihood (3)and taking partial
derivatives, we obtain

ﬁ)’)jlv,(a+ﬂ)+(//(a+%]—t//(a)—l//[a+ﬂ+%m(4)
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Maximum quasi-likelihood estimates of 3; 'S are obtained

by equating (4), (5) and (6) to zero and solving

e sl

)

%zg{n(nﬁw [7{_;(8:2][”[“[3 %j_'”(“%

simultaneously. Denote the estimates by AQL. The second

]j‘ derivatives of Q are given below

(6)

) G (ACR G g C R G

_[((:_Z))?J(w(a+ﬂ)+l/,(a%)_W(a)_w(mm%nz_

bl e (CE R G e

(7

i ] O G v
(revsep)roless )| (20D folernes Jolerns))]
G R
(viesnyvfess[vtaspronfas L wier st
527=§;{1+(n1_1)¢}K%‘%M""(“*ﬂ %]H%J
o[ t{ar ) vtarnvfess 1)
e e MMl

plerorglrfesvemelevions(esl])

where () and v’ () are digamma and trigamma functions respectively.

Expectations of the minus the second derivatives are given below,
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D,=B,=A,= yio {1+(nn_1)¢} [(1fﬂ](g{/(a+,B)+y/(a+%]—l//(a)—y/(a+,B+%D2] (13)
el )]
B33:yi0{1+(nn—1)¢} (74(17[%)) W[a+ﬂ+%jw(a+%ﬁ] )

A,=B, = yio {1+(nn—1)¢ (lfﬁj[l//(a+ﬂ)—1/1(0{+ﬁ+%nx

|
w(a+ﬂ)+w[a+§j—w<a>—w[a+ﬂ+§m

A“:B”:§{1+(nn—l)¢}Mﬁ(l—n)J(W(“+ﬂ+ﬂ"’(“+%nx
(v/(mﬂ)w(wij—w(a)—w(a+ﬂ+%m
M v

Denote the Quasi-likelihood estimates of A = (0[, ,3, Y ) by

T
N

(16)

amn

2.3 The C(0) test statistic based on the Extended quasi-
/IQL. If /1QL is used inS,A B andD, which isa/M likelihood( CQ+ )
consistent estimates of A under the null hypothesis, then

~ ~ The extended quasi-likelihood(Nelder and Pregibon, 1987
S (ﬂQL) = ‘I’(ﬂQL ) Then the quasi-likelihood score or * a ( g )

can be used for the simultaneous estimation of the [ jand @
the C (a) statistic is . The extended quasi-log-likelihood for an observation Z

LA with mean and variance specified is
C, :‘P'(D—AB‘ A’) ¥ (19)

z(1—z){1—(n—1)¢}}jﬂ (z-t)n

dt
" 2 t(1-t){1+(n-1)p} (20)

Q' (z,7m,9)= —%log(2k)—%log{

The Extended quasi-log-likelihood for the data under
consideration, then, is

n

Q" (z,7,4)=C —%Z[leg{H(n—1)¢}+m{ybg[§j+(n— y)log(ll%zm

y=0

2y
whereCis term not involving the parameters.Define We wish to test the hypothesis Ho 17T, =...= TTg against
A :(11’22’23) Z(a,ﬂ,]/).Then let H1 ‘not all 7 'S are the same.Now, let ﬁt be some /M
oQ* . Q" consistent estimator of A under the null hypothesis. Then

Y, = Q io1..S—1and q)k:i,k—hz,s . P
oo, oA, the C (0{) test is based on

S,(1)=Wi(4)- B (A1)~ B0 (2) - Byos (), i=1,...5 -1
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where  f3,;, f,; and [ are the partial regression Q" i=1,.,5-1
coefficients of W,and¢,, ¥ ,and®,and'¥,and e, w=E 01,04, k=123

respectively.  The  variance-covariance  matrix  of
3 p _g| =9Q° _

S(2)={S,(4),...5., ()} is D—AB'A'and the By = EL%MS J k,s=1,2,3

regression  coefficients = ( B, 5, ﬂ3) = AB™' where

o7 :(ﬂll""’ﬂls—l)’ b, :(1821"-":825—1)’

133 = (ﬂ319"" 183371) .

Using A in S,ABand D, theC(a)test statistic is

-1
given by S'(D—AB%A') S, which is approximately

20* distributed as chi-square with S-1 degrees of freedom.
't _ Q , Lt=1,..S-1 The unbiased estimating equations for ,B i obtained from
04,00,
Q " are
= -Vl{wvla+p)ty|la+— |-v(a)-yv|a+f+—|||=0
da §{1+(n—1)¢}u -7 ( ) 7 (@) ¥
(22)

S8 SR o ) P

aQ i{n n- 1MKZQ((T:Z;_7{}[1//(“+ﬂ+ﬂ_w(a+%mzo (4)

Maximum extended quasi-likelihood estimates of i 'Sare Denote the estimates by iE oL The second derivatives of
obtained by solving (22), (23) and (24) simultaneously.

Q " are given below

8622; :yio {1+(n1_1)¢} l:[ﬂ(ln_—ﬂY)_yJ[v/’(a+[3)+y/(a+%J_W'{a+%]_w'(a+ﬁ+%j]

H}Www(ae)—ww-w(mmgﬂ
(25)

N

) (26)
[l// a+ﬂ 4 a+ﬁ+lN]
4
62Q* : ”(”‘y)_l[ ( lj_ [ lﬁ_ (n=y)7
2 y:0{1+ n— 1¢}{(7/4(1_”) 7/4} 4 05+7/ 4 0!+ﬂ+7 7/4(1_”)2 -
(yx(a+ﬂ+lj—y/(a+ﬁ+ln +(2n3y—27§(n_y)][w(a+ﬂ+lj—y/(a+ﬁ+lJﬂ
y y Y r(-n) y y
Q" Q& z(n-y) - 0 fz(=y) |
0adf ;{14_ n_ 1¢}\\( —x yj(l// ((Z+ﬂ) ‘//(05+,B+yjj+L (]—7[)2
(28)
(l//(a+ﬂ)—y/(a+ﬁ+%n(gﬂ(a+ﬂ)+l//(a+%]—(//(a)—l//(a+ﬂ+%jﬂ
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Expectations of the minus the second derivatives are given below,

D““\“B“‘i{n(n:m}[ﬁ”ﬁ)("’(“*ﬂ’“”(“i}‘”<“) g

29

7 N N
| |

y=0

a+ﬂ+;j]2] 31)
B”_yn0{1+(;n1)¢}:(1fnj[w(“+ﬂ)_"'(“+ﬂ+%jﬂ .

St {2 oo

S () e G

(w _y +1//(05+ j W(Mﬂ%j } (4)
;H n—1)¢ M ‘(1-7) ( (a+ﬂ+%j—l// a+ﬂ]x (35)
(v/ s gy st )-via)(as st ] }

>

B”zy_o{1+(;rll)¢}My (1_7;)}[ (mﬂ%}‘”(“ﬂj@(o‘+ﬂ)_w(“+ﬂ+%m °

Denote the Extended Quasi-likelihood estimates of

= - null hypothesis is rejected if CQ or CQ+ > Xi,p . Where p is
= ((Z,ﬂ,j/) by Agor - If Agg is used in S,A,B and D,

the degrees of freedom.
which is+/M consistent estimates of A under the null

hypothesis, then S (ZA,EQL ) =¥ (/{EQL) . Then the quasi-

likelihood score or the C (a) statistic is

3. Simulation

In this section we report on a simulation study conducted to
compare the performance, in terms of size and power, of

c :\P’(D— AR A’)_I\P (37)  likelihood ratio statistic (LR) and C(c) statistics.The
Q+

simulated data was generated based on the new McGBB
distribution. The 1000 over-dispersed data set were
y are common across groups. In this study we consider  simylated using the algorithm developed (Ahn and Chen,
S=2 groups. So the estimation of &, B and ¥ from the S 1995). The. open source stati§tica1 software R (versi.on 3.1..1)
was used in the study to simulate data. In the simulation
study, empirical levels were calculated based on 1000
replications for each combination of varying valuesof
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a, =a, =0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, Table 1: Empirical levels; & = 0.05; based on 1000
0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95 and simulated data sets for 3, = 8, = #=0.30,
1.00 and for values B, = 8, = f=0.30and v,=7,=y=1and @, =@, varied.

NW=V.=V) =1 parameters were chosen. For power, we
Estimated Empirical levels
considered varying values of &, =0.22, 0.24, 0.26, 0.28,

o = raried O Test (7. Test
030, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.61, 0.62, 0.63. 1 =Gy vaned LR Test 0 0%

0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.70, 0.71, 0.72, 0.73, 0.74 giﬂ' Egj—; ggij ggjg
and 0.75. For each value of,empirical powers were D:IEI D:D-ﬂ D:[HI D:D-*lﬁ
calculated forﬂl = ﬂz :ﬂ = 0_70 and 7/1 = }/2 = }/ = 1 023 0020 0048 0048
030 0038 0.043 0041
5 7
4. Results and Discussion g:ia E:gii g:gig g:gj;
045 0.023 0.046 0.050
4.1 Results 0.50 0.038 0.057 0.052
035 0.090 0.043 0.049
0.60 0.129 0.046 0.049
(.63 0.085 0.0534 0.045
070 0.101 0058 0.044
075 0076 0.047 0.030
(.80 0038 0.049 0.049
(.85 0073 0.052 0.030
000 0038 0042 0041
005 0051 0.056 0.049
1.00 0.063 0.054 0048

(a) Empirical Levels of C(QL) test, C(EQL) test and LR test based on 1000 simulated data sets

=)
(\! —
=]
—=— C(QL) test
—+— LR test
—— C(EQL) test
[To]
o

Empirical Levels
0.10
l

0.05
1

0.00
1

0.2 04 06 0.8 1.0

cL

Figure 1: Plot of empirical level comparison for CQ test, CQ+ test and LR testunder the McGBB model for varied &, = &,

and for values of #, = 3, = #=0.30 and }, =y, =y =lfor all procedures.
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Table 2: Empirical Power; & = 0.05; based on 1000 simulated data sets for ¢, =0.20 B, = 8, = £=0.70,

V1=, =y =1and a, varied

Estimated Empirical Power

& varied | LR Test Cg- Test CgTest
022 D038 0.136 0.163
0.24 0071 0.189 0.247
0.26 0.108 0231 0340
028 0125 0285 0381
030 0.147 0341 0452
033 0270 0.305 0.554
040 0330 0381 0672
043 03522 0.662 (.748
0.50 0.644 0716 0.803
0.53 0698 0775 0.856
0.60 0857 0824 0886
0.6l 0E79 no19 0.893
0.62 0910 0932 0966
0.63 0923 0932 0974
0.64 0042 0053 No73
0.63 0956 0964 0975
0.66 0968 0967 0977
067 0970 0o72 Qo749
068 0981 0977 0986
0.69 0982 0983 (980
0.70 Dog7 0goz2 0992
0.71 0989 0eg92 0903
0.72 0990 09894 0993
0.73 0og9z 0908 0996
0.74 090§ 0908 0998
073 0008 (909 0998

(b} Empirical powers of C(QL) test, C(EQL) test and LR test based on 1000 simulated data sets

2
—— QL) test
—+= LR test
—*— C(EQL) test
@
g
v w
2 S
[+]
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w
=]
a
~
5 3-
[aY]
pAg
=
2
T
02 0.3

T
0.4

T
0.5

T
06

T
0.7

Figure 2: Plot of empirical power comparison for CQ test, C o+ test and LR test under McGBB model for varied &, and for

values of &, =0.20, B, = B, = $=0.70 and y, =y, = y =1for all procedures.
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4.2Discussion

The results given in table 1 and figure 1 shows that, for all
varying values of &, =a,the C(a)test statistics C,and

C o+ shows conservative behavior. For small &; =, (

@, =a, =0.10, 0.15 and 0.20)the LR and the C () tests

shows some conservative behavior, otherwise all the
statistics produce consistent empirical levels close to the

nominal level At &, = &, (&; =&, =0.55, 0.60, 0.65, 0.70

and 0.75), the LR test shows liberal behavior and produce
empirical levels that are far away to the nominal level hence

not consistent. The C (0{) test CQ and C o+ produce

empirical levels very close to the nominal level while LR
test shows liberal behavior hence the C (a) tests are
preferred since it shows consistency on all varying values of
a, = @, . The performanceof the C (a ) test is better in that

it holds nominal level quite well and also has a simple form.

The results given in table 2 and figure 2.For &, (&, =0.22,

0.24, 0.26, 0.28, 0.30, 0.35, 0.40, 0.45 and 0.50), the power
of the LR test is to some extent smaller than those of the

other two statistics Cgand CQ+ .C(a)tests shows a
higher power consistency than LR test hence its a better test
statistics preferable, as they require estimates of the
parameters only under the null hypothesis. CQ isconsistent

for all varying values of &, with the highest empirical

power.Maximum likelihood estimates (mle’s) of the
parameters under the null and alternative hypothesis were
obtained by maximizing log-likelihood of McGBB
distribution (1) using the R-language subroutine. The quasi-
likelihood and Extended quasi-likelihood estimates of the
parameters under the null hypothesis were obtained by
maximizing the Quasi log-likelihood (3) and Extended
Quasi log-likelihood (21)using the R-language subroutine

4.3 Comparison and Conclusion of the C (0{ ) statistics
and LR test statistics

Performance evaluation measures empirical level (size) and
the empirical power were obtained for the simulated data.
The comparison of the test statistics based on empirical level
and empirical power is as given in table 1 and 2 respectively.
Based on the results from the tables and figure 1 and 2,

C(a)tests perform better than LR test since they are
consistent and holds nominal level quite well and have
higher power. The CQ test is the best since it shows the

highest conservative behavior and the highest empirical
power.
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