
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 11, November 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Survey Paper on Cube Computation Techniques

Amar Sawant
1
, Madhav Ingle

2

1PG Student of Computer Engineering, Jayawantrao Sawant College of Engineering, Hadapsar, Pune, India

Abstract: Efficient aggregations computation is key part in data mining. But for this the N-dimensional generalization of these

operators is required. Data Cube is a way of structuring data in N-dimensions. A data cube is defined as a lattice of cuboids. The

computation of data cube can reduce the response time and enhance the performance of analytical processing. There are several

methods and several strategies for cube computation. But these techniques have limitation so Map Reduce based approach is used

Keywords: Data Cubes, Cubing, Cube Computation Techniques, BUC, Map Reduce

1. Introduction

A cube can be considered a multi-dimensional generalization
of a two- or three-dimensional spreadsheet. Cube is a
shortcut for multidimensional dataset, given that data can
have an arbitrary number of dimensions Conceiving data as a
cube with hierarchical dimensions leads to conceptually
straightforward operations to facilitate analysis. To align the
data content with a familiar visualization enhances analyst
learning and productivity. In data mining systems efficient
computation of aggregations plays a key role.

The aggregations are mentioned to as GROUP-BY‟S. The
SQL aggregate functions and the GROUP BY operator are
used for aggregation and produce zero-dimensional or one
dimensional aggregates respectively. Data analysis
applications need the N dimensional generalization of these
operators. The data cube is used for conveniently supporting
multiple aggregates in OLAP databases. It requires
computing group-bys on all possible combinations of a list of
attributes, and is equivalent to the union of a number of
standard group-by operations. The basic cube problem is that
the cube problem is exponential in the number of dimensions.
In addition, the size of each group-by depends upon the
cardinality of its dimensions.

2. Techniques for Cube Computation

2.1 Multi- Dimensional aggregate computation

Here Authors explained the technique to compute multiple
group-bys by incorporating optimizations techniques like
smallest-parent, cache-results, amortize-scans, share-sorts
and share-partitions.
 Smallest-parent: This optimization is at computing a

group by from the smallest previously computed group-
by.

 Cache-results: This optimization is at caching (in
memory) the results of a group-by from which other
groupbys are computed to reduce disk I/O.

 Amortize-scans: This optimization is at amortizing disk
reads by computing as many group-bys as possible,
together in memory.

 Share-sorts: This optimization is specific to the sort-
based algorithms and used at sharing sorting cost across
multiple group bys.

 Share-partitions: This optimization is specific to the
hash based algorithms.[2]

2.2 Multi-Way array aggregation

This is top down approach where computation starts from the
larger group-bys and proceeds towards the smallest group-
bys. In this, a partition-based loading algorithm designed and
implemented to convert a relational table or external load file
to a (possibly compressed) chunked array. There is no direct
tuple comparison. It performs simultaneous aggregation on
multiple dimension.[3]

2.3 Bottom-Up computation (BUC)

BUC is an algorithm for sparse and iceberg cube
computation. BUC uses the bottom-up approach that allows
to prune unnecessary computation by recurring to A-priori
pruning strategy. If a given cell does not satisfy minsup, then
no discendant will satisfy minsup either. The Iceberg cube
problem is to compute all group-bys that satisfy an iceberg
condition.[4]

First, BUC partitions dataset on dimension A, producing
partitions a1, a2, a3, a4.Then, it recurses on partition a1,the
partition a1 is aggregated and BUC produces <a1,*,*,*>.
Next, it partitions a1 on dimension B. It produces
<a1,b1,*,*> and recurses on partition a1,b1. Similarly, it
produces <a1,b1,c1,*> and then <a1,b1,c1,d1>. Now, it
returns from recursion and produces <a1,b1,c1,d2> etc.After
processing partition a1, BUC processes partition a2 and so
on.

2.4 Star Cubing

Star Cubing integrate the top-down and bottom-up methods.
It explores shared dimensions .E.g., dimension A is the
shared dimension of ACD and AD. ABD/AB means cuboid
ABD has shared dimensions AB. Star cubing allows for
shared computations .e.g., cuboid AB is computed
simultaneously as ABD. Star Cubing aggregate in a top-down
manner but with the bottom-up sub-layer underneath which
will allow A-priori pruning. Its shared dimensions grow in
bottom-up fashion.[5]

Paper ID: NOV151548 1666

http://en.wikipedia.org/wiki/Spreadsheet
http://en.wikipedia.org/wiki/Dimension_(data_warehouse)

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 11, November 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

2.5 Minimal Cubing Approach

In many applications, like bioinformatics, statistics and text
processing, datasets are characterized by high dimensionality
e.g. over 100 dimensions -> 2100 cuboids in a full cube. As
huge cube there is infeasible computation time. Iceberg cube
is not an ultimate solution as it cannot be incrementally
updated. In this low minsup requires too space and high
minsup gives no significant results.[6]

A minimal cubing approach, a new semi-online
computational model is based on the computation of shell
fragments. This method partitions „vertically‟ a high
dimensional dataset into a set of disjoint low dimensional
datasets called fragments. Then, for each fragment, it
computes local data cube. In shell fragment efficiency is
obtained by using inverted index, i.e. a list of record-ids
associated to each dimension value. Given the pre-computed
fragment cubes, intersection among fragments is performed
online by re-assembling cuboids of the required data cube. It
reduces high dimensionality of the data cube to lower
dimensionality. Online operations of re-construction of
original dimensional space. There is Tradeoffs between the
pre-processing phase and the performance of online
computation.

2.6 Parallel approaches

Parallel Algorithms are introduced for cube computation over
small PC clusters. Algorithm BPP (Breadth-first Writing,
Partitioned, Parallel BUC), in which the dataset is not
replicated, but is range partitioned on an attribute basis. The
output of cuboids is done in a breadth-First fashion, as
opposed to the depth-first writing that BUC do. In Depth
First writing, cells may belong to different cuboids. For
example, the cell a1 belongs to cuboid A, the cell a1b1 to
cuboid AB, and the cells a1b1c1 and a1b1c2 belong to ABC.
The point is that cuboids is scattered. This clearly incurs a
high I/O over-head. It is possible to use buffering to help the
scattered writing to the disk. However, this may require a
large amount of buffering space, thereby reducing the amount
of memory available for the actual computation.
Furthermore, many cuboids may need to be maintained in the
buffers at the same time, causing extra management
overhead. In BPP, this problem is solved by breadth-first
writing, implemented by first sorting the input dataset on the
“prefix” attributes. Breadth-First I/O is a significant
improvement over the scattering I/O used in BUC.

Another Parallel algorithm PT (Partitioned Tree) works with
tasks that are created by a recursive binary division of a tree
into two sub trees having an equal number of nodes. In PT,
there is a parameter that controls when binary division stops.
PT tries to exploit a affinity scheduling. During processor
assignment, the manager tries to assign to a worker processor
a task that can take advantage of prefix affinity based on the
root of the subtree.PT is top-down. But interestingly, because
each task is a sub tree, the nodes within the sub tree can be
traversed/computed in a bottom-up fashion. In fact, PT calls
BPP-BUC, which offers breadth-first writing, to complete the
processing. Algorithm PT load-balances by using binary

partitioning to divide the cube lattice as evenly as possible
PT is the algorithm of choice for most situations.

3. Limitations of Existing Techniques

There are three main limitations in the existing techniques:
1) They are designed for a single machine or clusters with

small number of nodes [10]. It is difficult to process data
with a single (or a few) machine(s) at many companies
where data storage is huge (e.g., terabytes per day).

2) Many of the techniques use the algebraic measure [1] and
use this property to avoid processing groups with a large
number of tuples. This allows parallelized aggregation of
data subsets whose results are then post processed to
derive the final result. Many important analyses over logs,
involve computing holistic (i.e.,nonalgebraic) measures.
Holistic measures pose significant challenges for
distribution.

3) Existing techniques failed to detect and avoid extreme data
skew.

4. Map Reduce Based Approach

Map Reduce is rapidly becoming one of most popular
parallel execution frameworks. Introduced in 2004 by
Google Corporation, it automatically parallelizes task
execution, given that users formulate algorithm as map and
reduce steps. Data partitioning, fault tolerance, execution
scheduling are provided by Map Reduce framework itself.
Map Reduce was designed to handle large data volumes and
huge clusters (thousands of servers). Map Reduce is a
programming framework that allows executing user code in a
large cluster. Hadoop is an open-source implementation of
this framework. All the user has to write two functions: Map
and Reduce.

During the Map phase, the input data are distributed across
the mapper machines, where each machine then processes a
subset of the data in parallel and produces one or more <key;
value> pairs for each data record. Next, during the Shuffle
phase, those <key, value> pairs are repartitioned (and sorted
within each partition) so that values corresponding to the
same key are grouped together into values {v1; v2; :::}
Finally, during the Reduce phase, each reducer machine
processes a subset of the <key,{v1; v2; :::}> pairs in parallel
and writes the final results to the distributed file system. The
map and reduce tasks are defined by the user while the
shuffle is accomplished by the system.

5. Conclusion

Efficient Cube computation is important problem in data
cube technology. So many techniques are used for computing
cube like Multiway array aggregation, BUC, Star Cubing, the
computation of shell fragments and parallel algorithms. BUC
is sensitive to skew in the data; the performance of BUC
degrades as skew increases. However, unlike MultiWay, the
result of a parent cuboid does not help compute that of its
children in BUC. For the full cube computation, if the dataset
is dense, Star Cubing performance is comparable with
MultiWay, and is much faster than BUC. If the data set is

Paper ID: NOV151548 1667

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 11, November 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

sparse, Star-Cubing is significantly faster than MultiWay and
BUC, in most cases. Parallel algorithm like BPP and PT are
designed for small PC clusters and therefore cannot take
advantage of the Map Reduce infrastructure. Proposed
approach effectively distributes data and computation
workload .Using important subset of holistic measures we are
doing cube materialization and identifying interesting cube
groups. MR-Cube algorithm efficiently distributes the
computation workload across the machines and is able to
complete cubing tasks at a scale where previous algorithms
fails.

References

[1] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D.
Reichart, M. Venkatrao, F.Pellow, and H. Pirahesh,
"Data Cube: A Relational Operator Generalizing
Group-By, Cross-Tab and Sub-Totals," Proc.12th Int‟l
Conf. Data Eng. (ICDE), 1996.

[2] S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta, J.
Naughton, R. Ramakrishnan,and S. Sarawagi, "On the
Computation of Multidimensional Aggregates,"
Proc.22nd Int‟l Conf. Very Large Data Bases (VLDB),
1996.

[3] Y. Zhao, P. M. Deshpande, and J. F. Naughton.”An
array-based algorithm for simultaneous
multidimensional aggregates”. In SIGMOD'97.

[4] R.T. Ng, A.S.Wagner, and Y. Yin, "Iceberg-Cube
Computation with PC Clusters," Proc. ACM SIGMOD
Int‟l Conf. Management of Data, 2001.

[5] D. Xin, J. Han, X. Li, and B. W. Wah. Starcubing:
Computing iceberg cubes by top-down and bottom-up
integration. In VLDB'03.

[6] Xiaolei Li, Jiawei Han,Hector Gonzalez “High-
Dimensional OLAP: A Minimal Cubing Approach“
University of Illinois at Urbana- Champaign, Urbana,
IL 61801, USA.

[7] A. Nandi, C. Yu, P. Bohannon, and R. Ramakrishnan,
“Distributed Cube Materialization on Holistic
Measures,” Proc. IEEE 27th Int‟l Conf. Data Eng.
(ICDE), 2011.

[8] Arnab Nandi, Cong Yu, Philip Bohannon, and Raghu
Ramakrishnan “Data Cube Materialization and Mining
over MapReduce “ IEEE transaction on Knowledge and
Data Engineering, vol. 24, no. 10, Oct 2012.

[9] G. Cormode and S. Muthukrishnan, “The CM Sketch
and Its Applications,” J. Algorithms, vol. 55, pp. 58-75,
2005.

[10] K. Sergey and K. Yury, “Applying Map-Reduce
Paradigm for Parallel Closed Cube Computation,” Proc.
First Int‟l Conf. Advances in Databases, Knowledge,
and Data Applications (DBKDA), 2009.

[11] A. Abouzeid et al., “HadoopDB: An Architectural
Hybrid of MapReduce and DBMS Technologies for
Analytical Workloads,” Proc. VLDB Endowment, vol.
2, pp. 922-933, 2009.

.

Paper ID: NOV151548 1668

