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Abstract: Efficient aggregations computation is key part in data mining. But for this the N-dimensional generalization of these 

operators is required. Data Cube is a way of structuring data in N-dimensions. A data cube is defined as a lattice of cuboids. The 

computation of data cube can reduce the response time and enhance the performance of analytical processing. There are several 

methods and several strategies for cube computation. But these techniques have limitation so Map Reduce based approach is used 
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1. Introduction 
 
A cube can be considered a multi-dimensional generalization 
of a two- or three-dimensional spreadsheet. Cube is a 
shortcut for multidimensional dataset, given that data can 
have an arbitrary number of dimensions Conceiving data as a 
cube with hierarchical dimensions leads to conceptually 
straightforward operations to facilitate analysis. To align the 
data content with a familiar visualization enhances analyst 
learning and productivity. In data mining systems efficient 
computation of aggregations plays a key role. 
 
The aggregations are mentioned to as GROUP-BY‟S. The 
SQL aggregate functions and the GROUP BY operator are 
used for aggregation and produce zero-dimensional or one 
dimensional aggregates respectively. Data analysis 
applications need the N dimensional generalization of these 
operators. The data cube is used for conveniently supporting 
multiple aggregates in OLAP databases. It requires 
computing group-bys on all possible combinations of a list of 
attributes, and is equivalent to the union of a number of 
standard group-by operations. The basic cube problem is that 
the cube problem is exponential in the number of dimensions. 
In addition, the size of each group-by depends upon the 
cardinality of its dimensions. 
 
2. Techniques for Cube Computation 
 
2.1 Multi- Dimensional aggregate computation    

 
Here Authors explained the technique to compute multiple 
group-bys by incorporating optimizations techniques like 
smallest-parent, cache-results, amortize-scans, share-sorts 
and share-partitions. 
 Smallest-parent: This optimization is at computing a 

group by from the smallest previously computed group-
by.  

 Cache-results: This optimization is at caching (in 
memory) the results of a group-by from which other 
groupbys are computed to reduce disk I/O. 

 Amortize-scans: This optimization is at amortizing disk 
reads by computing as many group-bys as possible, 
together in memory. 

 Share-sorts: This optimization is specific to the sort-
based algorithms and used at sharing sorting cost across 
multiple group bys. 

 Share-partitions: This optimization is specific to the 
hash based algorithms.[2]  
 

2.2 Multi-Way array aggregation 

 

This is top down approach where computation starts from the 
larger group-bys and proceeds towards the smallest group-
bys. In this, a partition-based loading algorithm designed and 
implemented to convert a relational table or external load file 
to a (possibly compressed) chunked array. There is no direct 
tuple comparison. It performs simultaneous aggregation on 
multiple dimension.[3] 
 
2.3 Bottom-Up computation (BUC) 

 

BUC is an algorithm for sparse and iceberg cube 
computation. BUC uses the bottom-up approach that allows 
to prune unnecessary computation by recurring to A-priori 
pruning strategy. If a given cell does not satisfy minsup, then 
no discendant will satisfy minsup either. The Iceberg cube 
problem is to compute all group-bys that satisfy an iceberg 
condition.[4] 
 
First, BUC partitions dataset on dimension A, producing 
partitions a1, a2, a3, a4.Then, it recurses on partition a1,the 
partition a1 is aggregated and BUC produces  <a1,*,*,*>. 
Next, it partitions a1 on dimension B. It produces 
<a1,b1,*,*> and recurses on partition a1,b1. Similarly, it 
produces <a1,b1,c1,*> and then <a1,b1,c1,d1>. Now, it 
returns from recursion and produces <a1,b1,c1,d2> etc.After 
processing partition a1, BUC processes partition a2 and so 
on. 
 
2.4 Star Cubing 

 

Star Cubing integrate the top-down and bottom-up methods. 
It explores shared dimensions .E.g., dimension A is the 
shared dimension of ACD and AD. ABD/AB means cuboid 
ABD has shared dimensions AB. Star cubing allows for 
shared computations .e.g., cuboid AB is computed 
simultaneously as ABD. Star Cubing aggregate in a top-down 
manner but with the bottom-up sub-layer underneath which 
will allow A-priori pruning. Its shared dimensions grow in 
bottom-up fashion.[5] 
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2.5 Minimal Cubing Approach 

 

In many applications, like bioinformatics, statistics and text 
processing, datasets are characterized by high dimensionality 
e.g. over 100 dimensions -> 2100 cuboids in a full cube. As 
huge cube there is infeasible computation time. Iceberg cube 
is not an ultimate solution as it cannot be incrementally 
updated. In this low minsup requires too space and high 
minsup gives no significant results.[6]  
 
A minimal cubing approach, a new semi-online 
computational model is based on the computation of shell 
fragments. This method partitions „vertically‟ a high 
dimensional dataset into a set of disjoint low dimensional 
datasets called fragments. Then, for each fragment, it 
computes local data cube. In shell fragment efficiency is 
obtained by using inverted index, i.e. a list of record-ids 
associated to each dimension value. Given the pre-computed 
fragment cubes, intersection among fragments is performed 
online by re-assembling cuboids of the required data cube. It 
reduces high dimensionality of the data cube to lower 
dimensionality. Online operations of re-construction of 
original dimensional space. There is Tradeoffs between the 
pre-processing phase and the performance of online 
computation. 
 
2.6 Parallel approaches 

 

Parallel Algorithms are introduced for cube computation over 
small PC clusters. Algorithm BPP (Breadth-first Writing, 
Partitioned, Parallel BUC), in which the dataset is not 
replicated, but is range partitioned on an attribute basis. The 
output of cuboids is done in a breadth-First fashion, as 
opposed to the depth-first writing that BUC do. In Depth 
First writing, cells may belong to different cuboids. For 
example, the cell a1 belongs to cuboid A, the cell a1b1 to 
cuboid AB, and the cells a1b1c1 and a1b1c2 belong to ABC. 
The point is that cuboids is scattered. This clearly incurs a 
high I/O over-head. It is possible to use buffering to help the 
scattered writing to the disk. However, this may require a 
large amount of buffering space, thereby reducing the amount 
of memory available for the actual computation. 
Furthermore, many cuboids may need to be maintained in the 
buffers at the same time, causing extra management 
overhead. In BPP, this problem is solved by breadth-first 
writing, implemented by first sorting the input dataset on the 
“prefix” attributes. Breadth-First I/O is a significant 
improvement over the scattering I/O used in BUC. 
 
Another Parallel algorithm PT (Partitioned Tree) works with 
tasks that are created by a recursive binary division of a tree 
into two sub trees having an equal number of nodes. In PT, 
there is a parameter that controls when binary division stops. 
PT tries to exploit a affinity scheduling. During processor 
assignment, the manager tries to assign to a worker processor 
a task that can take advantage of prefix affinity based on the 
root of the subtree.PT is top-down. But interestingly, because 
each task is a sub tree, the nodes within the sub tree can be 
traversed/computed in a bottom-up fashion. In fact, PT calls 
BPP-BUC, which offers breadth-first writing, to complete the 
processing. Algorithm PT load-balances by using binary 

partitioning to divide the cube lattice as evenly as possible 
PT is the algorithm of choice for most situations. 
 

3. Limitations of Existing Techniques 
 

There are three main limitations in the existing techniques: 
1) They are designed for a single machine or clusters with 

small number of nodes [10]. It is difficult to process data 
with a single (or a few) machine(s) at many companies 
where data storage is huge (e.g., terabytes per day). 

2) Many of the techniques use the algebraic measure [1] and 
use this property to avoid processing groups with a large 
number of tuples. This allows parallelized aggregation of 
data subsets whose results are then post processed to 
derive the final result. Many important analyses over logs, 
involve computing holistic (i.e.,nonalgebraic) measures. 
Holistic measures pose significant challenges for 
distribution. 

3) Existing techniques failed to detect and avoid extreme data 
skew. 

 
4. Map Reduce Based Approach 
 
Map Reduce is rapidly becoming one of most popular 
parallel execution frameworks. Introduced in 2004 by 
Google Corporation, it automatically parallelizes task 
execution, given that users formulate algorithm as map and 
reduce steps. Data partitioning, fault tolerance, execution 
scheduling are provided by Map Reduce framework itself. 
Map Reduce was designed to handle large data volumes and 
huge clusters (thousands of servers). Map Reduce is a 
programming framework that allows executing user code in a 
large cluster. Hadoop is an open-source implementation of 
this framework. All the user has to write two functions: Map 
and Reduce.  
 

During the Map phase, the input data are distributed across 
the mapper machines, where each machine then processes a 
subset of the data in parallel and produces one or more <key; 
value> pairs for each data record. Next, during the Shuffle 
phase, those <key, value> pairs are repartitioned (and sorted 
within each partition) so that values corresponding to the 
same key are grouped together into values {v1; v2; :::} 
Finally, during the Reduce phase, each reducer machine 
processes a subset of the <key,{v1; v2; :::}> pairs in parallel 
and writes the final results to the distributed file system. The 
map and reduce tasks are defined by the user while the 
shuffle is accomplished by the system. 
 
5. Conclusion 
 
Efficient Cube computation is important problem in data 
cube technology. So many techniques are used for computing 
cube like Multiway array aggregation, BUC, Star Cubing, the 
computation of shell fragments and parallel algorithms. BUC 
is sensitive to skew in the data; the performance of BUC 
degrades as skew increases. However, unlike MultiWay, the 
result of a parent cuboid does not help compute that of its 
children in BUC. For the full cube computation, if the dataset 
is dense, Star Cubing performance is comparable with 
MultiWay, and is much faster than BUC. If the data set is 
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sparse, Star-Cubing is significantly faster than MultiWay and 
BUC, in most cases. Parallel algorithm like BPP and PT are 
designed for small PC clusters and therefore cannot take 
advantage of the Map Reduce infrastructure. Proposed 
approach effectively  distributes data and computation 
workload .Using important subset of holistic measures we are 
doing cube materialization and identifying interesting cube 
groups. MR-Cube algorithm efficiently distributes the 
computation workload across the machines and is able to 
complete cubing tasks at a scale where previous algorithms 
fails. 
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