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Abstract: Image segmentation is the process of partitioning a digital image into multiple segments (sets of pixels, also known as super 

pixels).Image segmentation is typically used to locate objects and boundaries (lines, curves, etc.) in images. Each of the pixels in a 

region are similar with respect to some characteristic or computed property, such as color, intensity, or texture. Adjacent regions are 

significantly different with respect to the same characteristic(s). Among the various approaches proposed for this task, unsupervised 

methods have the advantage of being able to segment images without any assistance from the user. However, such methods often suffer 

from long runtimes and tend to be sensitive to the choice of parameters. Because of these problems, users will often prefer semi-

supervised methods, which provide a more controllable output in the same amount of time. This paper proposes a new unsupervised 

approach, based on random walks, which maps each pixel to the most probable label in a local neighbourhood. To make this approach 

more robust to the choice and learning of the parameters, we propose an efficient computational technique, in which the parameters and 

the segmentation probabilities are recomputed alternatively. We also describe a refinement strategy that improves the speed and 

accuracy of the segmentation by applying random walks at different scales. 
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1. Introduction 
 
Image segmentation is an important step in many 
applications, sometimes even the ultimate goal of the 
analysis. It remains a challenging problem which requires the 
search for an optimal partition of the pixel grid of an image. 
Even under simple model assumptions, this problem is NP-
hard. The task of image segmentation has thus been 
addressed by various constructive algorithms, e.g., watershed 
segmentation as well as by spectral methods such as 
normalized cuts. All segmentation algorithms have design 
parameters which need to be tuned for each specific 
application. Hence, a quantitative validation of 
segmentations is all the more important. Given segmentation, 
there are two possible types of errors: (i) under-segmentation 
– a segment contains parts which belong to different regions 
and should be split; (ii) over-segmentation, two adjacent 
segments in fact belong to the same region and should be 
merged. Most image segmentations suffer from at least one if 
not both types of errors. 
 
The automated extraction of regions in an image, known as 
image segmentation, is a challenging yet important task. In 
medical imaging, for instance, the segmentation of images or 
3D volumes is essential to several key applications, such as 
the diagnosis and monitoring of pathologies, the selection of 
optimal treatment plans, as well as image-guide procedures. 
The segmentation of natural images is also an important step 
in the identification and classification of persons and objects, 
and has applications in various domains such as surveillance. 

 
While supervised and semi-supervised segmentation methods 
like [1] and [2] offer a greater level of control, the manual 
process of collecting or annotating images can be very 
tedious and time-consuming. Unsupervised approaches, on 
the other hand, can segment images without any human 
assistance. Such segmentation approaches can be divided in 
two broad categories: region-based methods and edge-based 
methods [3]. Region-based methods focus on grouping pixels 
into regions sharing common properties like color, texture or 

gradient. This category includes methods based on clustering 
[4], [5], Gaussian Mixture Models (GMM) [6], mode-
seeking methods like the Mean-Shift algorithm [7], and 
Markov Random Fields (MRFs) [8]. Edge-based 
segmentation approaches, on the other hand, attempt to 
describe the regions in an image using their boundary. These 
boundaries can be found by detecting discontinuities in the 
image, for instance, using edge detection filters [9].  
 
Although recent unsupervised methods like [3] have 
considerably reduced the gap in terms of quality between 
automatic segmentation and human-assisted segmentation, 
such methods typically suffer from two problems: 1) they 
often need to learn a parametric model, which makes them 
slower than semi-supervised methods, and 2) they are also 
more sensitive to the choice of parameters. Because of these 
problems, users will often prefer semi-supervised methods, 
which provide a more controllable output in the same amount 
of time. 

 
This paper proposes a new unsupervised segmentation 
approach, based on random walks, which offers an accuracy 
comparable to state-of-the-art methods, while being much 
faster than these methods. The proposed approach is similar 
to mode-seeking methods like Mean-Shift [7], where pixels 
are mapped to the most probable label in a local 
neighbourhood (i.e., the modes). While these methods 
typically use a geometric distance measure to define this 
neighborhood, our approach uses a diffusion process to 
define the neighborhood, which allows it to better fit the 
regions in the image. Moreover, our approach uses a 
Gaussian Mixture Model (GMM) to learn the class 
distributions in the feature space. Because the segmentation 
results highly depend on the initial number of classes (i.e., 
mixture components) and the ability to properly learn the 
distribution parameters, we propose a strategy to 
dynamically adjust these parameters. While inspired by a 
similar technique used in Hidden Markov Random Fields 
(HMRF) [8], this strategy is more efficient and has the 
advantage of guaranteeing a global optimum. Finally, our 
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segmentation approach also uses an original refinement 
technique, in which random walks are applied at different 
scales. As well as making the approach faster, this technique 
also helps obtain a higher accuracy. 

 
2. The Proposed Approach 

Given an image   to segment, we denote as i a pixel of  
and write xi  ∈ 𝑅𝑑  the d-dimensional feature vector of i. 
Although more complex features like texture could be 
considered, to have a fast segmentation, we only use the 
CIE-LAB color coordinates as features. The unsupervised 
segmentation problem consists in assigning a label from a set 
C to each pixel i, without any assistance from a human and 
such that the regions defined by pixels with the same label 
correspond to the true regions in the image. 

 
Our objective is to develop a new unsupervised segmentation 
approach that is both fast and accurate. To achieve this 
objective, we propose a model composed of three steps. In 
the first step, we learn the class distribution parameters (i.e., 
class priors) using a Gaussian Mixture Model (GMM) 
approach. As we show in our experiments, segmenting an 
image using only these priors leads to inaccurate results due 
to the fact that the spatial coherence of class labels is not 
considered. To avoid this problem, in the second step, we use 
a stochastic model based on random walks to obtain a more 
coherent segmentation. To find global regions in the image 
and speedup the segmentation, we apply our model on a 
downscaled version of the image. Since the resulting 
segmentation is very coarse, in the third step, we then refine 
it at the original image scale. This refinement step is 
composed of three sub-steps. First, we extract the connected 
components in the image as individual regions. We then 
apply a few random walk iterations at full resolution to 
smooth the edges of the segmented regions. Finally, we 
reduce the number of regions by merging those whose size is 
smaller than a threshold. In the following subsections, we 
explain each of these steps in details and provide information 
on how to implement them efficiently. 

 
2.1. Class Parametersestimation 

 
The first step is to learn the class priors that will be used 
during the segmentation process. As in many segmentation 
methods, we suppose that the feature probability distribution 
of each class 𝑦𝑘  follows a Gaussian model: 

 
𝑝(𝑥𝑖 |𝑦𝑘 = 𝐺(𝑥𝑖 ; 𝜇𝑘 ,  𝑘))                         (1) 

 
We use GMM to estimate distribution parameters (𝜇𝑘 , Σk) and 
the class a priori probabilities p(𝑦𝑘 ). In GMM segmentation, 
each pixel is assigned to the class maximizing the posterior 
probability: 
 

𝑝 𝑦𝑘  𝑥𝑖 =
𝑝 𝑥𝑖 𝑦𝑘 𝑝(𝑦𝑘)

 𝑝 𝑥𝑖  𝑦𝑘
′  𝑝(𝑦𝑘

′ )𝑘 ′ ∈𝑐
                       (2) 

 
While simple, this method requires the user to specify the 
number of classes (regions) K in the image, a parameter 
which varies from one image to the next and can have a 
significant impact on the segmentation results. To be more 
robust to the initial value of K and the class parameters, in 

SectionII-B2, we present a technique that re computes these 
parameters iteratively 
 
2.2. Coarse  Segmentation using Random Walks 

 
Once the class parameters have been obtained, we then apply 
a random walk segmentation model on a downscaled version 
of the image (1:4 ratio in our experiments), obtained using 
bicubic interpolation. We use a downscaled image to 
accelerate the computation as well as to find larger regions 
that better correspond to the true regions in the image. 
 
1) Basic model: Our proposed segmentation model is based 
on a generative process where a random walker moves along 
the nodes of a graph corresponding to the pixels of the target 
image. At each step, the walker can either terminate the walk 
or generate a class label based on the features of the current 
pixel, or move to a neighbor pixel. Since these movements 
are more probable between similar pixels, the pixels within a 
region will have a greater chance of generating the same 
label. 

Each pixel i  ∈  is connected to a set  𝑁𝑖of neighbour 
pixels, defined as the 8-neighborhood in this work, and the 
weight of an edge between neighbor pixels i and j is given by 
 

𝑤𝑖𝑗 = exp  − 𝛾𝑙 𝑥𝑖𝑙 − 𝑥𝑗𝑙  
2

𝑑

𝑖=1

                             (3) 

In this formulation, 𝛾𝑙control the relative influence of each 
feature on the weights computation. Since our features are 
CIE-LAB coordinates, we have three parameters: 𝛾𝐿, 𝛾𝐴and 
𝛾𝐵 .  

 
The transition probabilities  𝑞𝑖𝑗  from pixel i to pixel j are 
defined using the edge weights 

 
𝑞𝑖𝑗 =

𝑤𝑖𝑗

 𝑤𝑖𝑗
′

𝑗 ′ ∈𝑁𝑖

                                       (4)  

 
Denote by W the matrix of elements 𝑤𝑖𝑗  and let D be a 
diagonal matrix such that 𝑑𝑖𝑗 = 𝑤𝑖𝑗𝑗 . The transition 
probabilities can be expressed as Q = 𝐷−1W.  
 
At each step, the walker can stop its walk with probability α 
> 0 and emit a label based on the intensity of the current 
pixel i. The probability of emitting label 𝑦𝑘at pixel i is 
defined as 𝑒𝑖𝑘= p(𝑦𝑘 |𝑥𝑖), and we denote by E the matrix 
containing these emission probabilities. Otherwise, if the 
walk continues, the walker chooses a neighbor j ∈ 𝑁𝑖  with 
probability qij and moves to this neighbor 
 
Let  𝑆𝑖𝑘

(𝑡) be the probability of emitting label 𝑦𝑘 in a random 
walk of length t starting at pixel i. These probabilities can be 
expressed as a matrix 
 

𝑆(𝑡) = 𝛼(1 − 𝛼)𝑡𝑄𝑡𝐸                                       (5) 
 
The total probability 𝑆𝑖𝑘of producing label 𝑦𝑘  starting at 
pixel i, considering all possible walk lengths, is thus 
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𝑆 =  𝑆(𝑡)

∞

𝑡=0

= 𝛼(𝐼 − (1 − 𝛼)𝑄)−1𝐸                       (6) 

 
Finally, image I is segmented by mapping each pixel i to the 
label 𝑦𝑘with maximum probability𝑠𝑖𝑘 . 
 
This basic model is related to other segmentation methods. 
Thus, as Mean-Shift [7], our model can be considered as a 
mode seeking method, where the most probable class of a 
pixel is obtained by considering the pixels within a small 
local region. However, while Mean-Shift uses a geometric 
distance measure to find the modes, our model uses a 
diffusion distance based on random walks. Parameter α 
controls the size of the local region. Also, when α = 1 is 
used, the proposed formulation corresponds to GMM 
segmentation [10]. Finally, if seeds (i.e., manually labeled 
pixels) are used instead of class priors, our basic model is 
then equivalent to the Random Walks with Restart (RWR) 
segmentation algorithm [2]. 
 
2) Adaptive model: Because our method uses GMM to 
estimate the class priors, it is sensitive to the number of 
classes K. Using a too big value for K will lead to the over 
segmentation of the image, and a too small value to its under 
segmentation. To avoid this problem, we use a strategy 
similar to the Expectation Maximization (EM) process of 
Hidden Markov Random Fields (HMRF) methods [8]. 
Starting with initial parameters obtained using GMM, we 
alternate between computing the segmentation probabilities 
S and re-estimating the distribution parameters, until 
convergence. Given probabilities S, and let Mk =  siki∈I , 
the distribution parameters of label yk can be recomputed as 
follows: 
 

𝜇
𝑘=

1

𝑀𝑘

 𝑠𝑖𝑘𝑖∈𝐼 𝑥𝑖                                                          (7) 

 
 𝑘

=
1

𝑀𝑘

 𝑠𝑖𝑘𝑖∈𝐼 (𝑥𝑖    -𝜇𝑘 )(𝑥𝑖    − 𝜇𝑘)𝑇                   (8) 

𝑃 𝑦𝑘 =
1

|𝐼|
𝑀𝐾                                            (9) 

For the pixel-based method, computing the segmentation 
probabilities of Eq. (6) at each iteration can be expensive. To 
speed up this process, we perform the following Cholesky 
decomposition 𝐿𝐿𝑇  = D−(1−α)W in a pre-processing step, 
and then recompute the probabilities at each iteration as 
 

S=𝛼(𝐿𝑇)−1𝐿−1𝐷𝐸                          (10) 
 

Since L is triangular, this computation can be done 
efficiently by using forward (back) substitution. Moreover, 
we use the fact that the decomposed matrix D−(1−α)W is 
sparse to further accelerate the computation, by setting to 0 
the values of L lower than a given threshold (a value of 10−8 
was used in our experiments). Thresholding these values can 
greatly accelerate the computation without affecting the 
results. Since the sparsity of L is similar to that of D − (1 − 
α)W, which has only |Ni|+1 non-zero elements in each row i, 
the time complexityof solving Eq. (10) is in O(|I| ・ K). 
Finally, since the linear system can be solved independently 
for each column of E, the computation can easily be 
parallelized. 
 

In MRF-based methods, finding the most probable label 
assignment is a NP-hard problem when the number of classes 
is greater than two (as is often the case in unsupersived 
segmentation). Hence, these methods generally use heuristic 
techniques like the Iterative Conditional Mode (ICM) 
algorithm for the inference process, which do not guarantee a 
global optimum. An advantage of our proposed model over 
MRF-based approaches is that it guarantees to find a unique 
global solution efficiently. 

 
2.3. Full-resolution segmentation refinement 

 
Since we apply the random walk method on a downscaled 
version of the image, the obtained segmentation can be very 
coarse. To refine it, we first resize the segmented image to 
the original scale, once more using interpolation, and apply 
the three following refinement steps. First, we extract the 
connected components (pixels of same label connected 
through an 8-neighborhood) in the image and map each of 
them to an individual class. This step is necessary to separate 
the regions that have similar properties but correspond to 
different persons or objects. 
 
Next, we do a few random walk iterations to remove the 
blockiness of the region boundaries. Let 𝑆0 be the rescaled 
segmentation obtained from the random walk model. We 
update the pixel-to-class probabilities iteratively as follows: 

 
𝑆 ′=(1-𝛼)QS+𝛼𝑆0                                    (11) 

 
In our experiments, this process typically converges after 10 
to 15 iterations. Since it only involves the multiplication of 
sparse matrices, the total runtime of this process is not 
significant. 
 
Finally, the last refinement step consists in merging the 
regions smaller than a given number of pixels to larger 
neighbor regions. Let 𝑦𝑘be the class of a region that does not 
satisfy the minimum size constraint. We compute a merging 
score ℎ𝑘𝑙 for every candidate region yl, defined as the sum of 
the weights between the pixels of class 𝑦𝑘and class 𝑦𝑙 , and 
merge 𝑦𝑘 to the candidate region with the highest score. 
These class-to-class merging scores can be evaluated 
efficiently as H = 𝑆𝑇WS. 
 
3. Conclusion 
 
We presented a new method for the unsupervised 
segmentation problem. This method uses a generative model 
based on random walks to map each pixel in an image to the 
most probable label in a local neighborhood. A GMM 
approach is used to estimate the initial class priors. To make 
our method more robust to this step, we proposed an iterative 
process in which the class parameters and segmentation 
probabilities are recomputed alternatively. We also presented 
a refinement strategy to improve the coarse segmentation 
obtained at the previous step. Due to its efficiently, this 
strategy can be applied at the original image scale without 
affecting the runtimes. In future works, we would like to 
investigate the use of other pixel features, and its impact on 
the segmentation efficiency and accuracy. 
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