
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 11, November 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Survey on Resource Allocation in Phase-Level
using MapReduce in Hadoop

Suryakant S. Bhalke

1

1JSPM’s Imperial College of Engineering & Research, Wagholi, Pune

Abstract: MapReduce is programming tool for Hadoop cluster. While allocating resources, MapReduce has two levels: Task-level and

Phase-level. These levels should be used to check performance of each job. In existing system, the scheduling is focus on task level

which tasks can have highly varying resource requirements during their lifetime and also its difficult to effectively utilize available

resources to reduce job execution time. To address this limitation, this project proposes a PRISM (Phase and Resource Information -

aware Scheduler MapReduce) which allocates a fine-grained resource at the phase-level to perform job scheduling. The job scheduling

of prism is performed by the master node, which maintains a list of jobs in the system. Each node manager (slave node) periodically

sends a heartbeat message to the scheduler. Upon receiving the status message from a node manager running on machine, the

scheduler computes the utilization for set of candidate phases for the tasks using the jobs phase-level resource requirement. Then it

select the phase with the highest utility for scheduling and update the resource utilization of the machine. This process is continued for

until scheduled the phases of map and Reduce task is completed.

Keywords: MapReduce, Hadoop, Scheduling, Resource Allocation

1. Introduction

Hadoop is an open source under the Apache fund account
component, and is an open source implementation of Google
graphs calculation model. It can easily develop and run large-
scale data processing. Two of the most core part are HDFS
(Hadoop Distributed File System) and MapReduce.

Businesses today are increasingly reliant on large-scale data
analytics to make critical day-to-day business decisions. This
shift towards data-driven decision making has fueled the
development of MapReduce [10], a parallel programming
model that has become synonymous with large scale, data-
intensive computation. In MapReduce, a job is a collection of
Map and Reduce tasks that can be scheduled concurrently on
multiple machines, resulting in significant reduction in job
running time. Many large companies, such as Google,
Facebook, and Yahoo!, routinely use MapReduce to process
large volumes of data on a daily basis. Consequently, the
performance and efficiency of MapReduce frameworks have
become critical to the success of today’s Internet companies.
Motivated by this observation, several recent proposals, such
as resource-aware adaptive scheduling (RAS) [15] and
Hadoop MapReduce Version 2 (also known as Hadoop
NextGen and Hadoop Yarn) [7], have introduced resource
aware job schedulers to the MapReduce framework.
HoAuthorver, these schedulers specify a fixed size for each
task in terms of required resources (e.g. CPU and memory),
thus assuming the run-time resource consumption of the task
is stable over its life time. HoAuthorver, this is not true for
many MapReduce jobs. In particular, it has been reported
that the execution of each MapReduce task can be divided
into multiple phases of data transfer, processing and storage
[12]. A phase is a sub-procedure in the task that has a distinct
purpose and can be characterized by the uniform resource
consumption over its duration. As Author shall demonstrate
in Section 2.2, the phases involved in the same task can have
different resource demand in terms of CPU, memory, disk
and network usage. Therefore, scheduling tasks based on

fixed resource requirements over their durations will often
cause either excessive resource contention by scheduling too
many simultaneous tasks on a machine, or low utilization by
scheduling too few.

1.1 HDFS

The Hadoop distributed file system (HDFS) to store large
files with streaming data access patterns, to run with
managers-workers mode, that is, there is a Name Node
(managers) and multiple Data Nodes (workers). Name Node
manages the file system tree and the tree in all of the files and
directories. Data Node is usually a Node in the cluster, a
record of each file in each block of Data Node information.

1.2 MapReduce

MapReduce work process is divided into two phases: the
Map and Reduce phase. A Map function, which is used to put
a set of keys for mapping into a new set of key-value pairs.
And it points to the Reduce function. MapReduce has four
parts: the framework of homework submission and
initialization, task allocation, task execution and completion
of the homework.

Firstly user program (Job Client) submits a job, and then the
job of the information will be sent to the job Tracker. Job
Tracker is the center of the Map - reduce framework, which
needs to communicate with the cluster machine timing
(heartbeat), and need to manage what program should be run
on which machines, to manage job failed, restart operation.
TaskTracker is a part of each machine in MapReduce. It is
designed to surveillance resources of their machines.
TaskTracker monitoring tasks run of the current state of the
machine. TaskTracker needs sends the information through
the heartbeat JobTracker. JobTracker will collect these
information to assign new job submitted a run on which
machines.

Paper ID: NOV151460 1249

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 11, November 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

2. The Framework of Hadoop YARN

YARN is the resource management system in the Hadoop
2.0. It splits the JobTracker of MRv1 into two independent
service: a global resource manager named Resource Manager
and Application Master of each application. The Resource
Manager is responsible for the resource management and
allocation of the whole system, while ApplicationMaster
responsible for the management of a single application.

YARN is still the Master/Slave structure. In the resource
management framework, the Resource Manager is Master,
NodeManager is a Slave, and the ResourceManager is
responsible for all the resources on the NodeManager for
unified management and scheduling. YARN is mainly
composed of the ResourceManager, NodeManager,
ApplicationMaster and several Container components.
 ResourceManager (RM): RM is a global resource

manager, is responsible for the resource management and
allocation of the whole system. It is mainly made up of two
components: the Scheduler (Scheduler) and the application
Manager (Applications Manager, ASM);

 ApplicationMaster (AM): Each application contains 1
AM. There are the main features: Negotiate with RM
scheduler for resources, Tasks within the task assigned to
further, Communicate with NM to start/stop the task, the
Monitor all tasks running state;

 NodeManager (NM): NM is on each node of resources
and task manager. On the one hand, it will report regularly
to the RM this node on the resource usage and the running
state of every Container. On the other hand, it receives and
deal with the Container from AM start/stop and other
requests;

 Container: Container is resource abstraction of the
YARN. It encapsulates the multi-dimensional resources on
a node, such as memory, CPU, disk, network and so on.

3. System Architecture

A fine grained, phase-level scheduling scheme that allocates
resources according to the phase that each task is currently
executing. The job scheduling in PRISM is performed by the
resource manager in the master node, which maintains a list
of jobs in the system. The phase level scheduler will use the
provided information to make scheduling decisions. When a
task needs to be scheduled, the scheduler replies to the
heartbeat message with a task scheduling request. The node
manager then launches the task. Each time a task finishes
executing a particular phase, the task asks the node manager
for a permission to start the next phase . The task of each
pase is scheduled based on the utility of that phase. The
scheduler assigns a utility value to each phase which
indicates the benefit of scheduling the phase. The utility
function is calculated based on the fairness and job
performance of the particular phase. Then it select the phase
with the highest utility for scheduling and update the resource
utilization of the machine.

Figure 1: System Architecture

4. System Block Diagram

Figure 2: System Block Diagram

5. Challenges

 Varying resources at the task-level offer author

performance.
 It is difficult for task-level scheduler to utilize the run-time

resources. So that it reduces job execution time while
executing

Finally, even though the flexibility of phase-based scheduling
should allow the scheduler to improve both resource
utilization and job performance over existing MapReduce
schedulers, realizing such a potential is still a challenging
problem. This is because pausing the task execution at run-
time may delay the completion of the current and subsequent
tasks, which may increase the job completion time (these
delayed tasks are commonly referred to as stragglers [10]).
Thus, the scheduler must avoid introducing stragglers when
switching bet Author phases. In the following sections,
Author will describe how PRISM overcomes this challenge

Paper ID: NOV151460 1250

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 11, November 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

6. Conclusion

MapReduce is programming model for cluster to perform a
data-intensive computing. In this paper Author mainly
demonstrate that, if the resources focus on task-level,
execution of each task may divide into many phases. While
executing these phases, many breaking- down of map and
reduce tasks will takes place and execute them in a parallel
across a large number of machine, so that it will reduce
running time of data-intensive jobs. So they will perform
resource allocation at the phase-level. Author will introduce
PRISM at the phase-level. PRISM demonstrates that, how
run-time resources can be used and how it varies over the
long life time. PRISM improves job execution algorithm and
performance of resources without introducing stragglers.

References

[1] Qi Zhang, Student Member, IEEE, Mohamed Faten

Zhani, ”PRISM: Fine-Grained Resource-Aware
Scheduling for MapReduce” IEEE Transactions On
Cloud Computing, Vol. 3, No. 2, April/June 2015.

[2] Hadoop MapReduce distribution [Online]. Available:
http://hadoop.apache.org, 2015.

[3] Hadoop Capacity Scheduler [Online]. Available:
http://hadoop.apache.org/docs/stable/capacity_scheduler
.html/, 2015.

[4] Hadoop Fair Scheduler [Online]. Available:
http://hadoop.apache.org/docs/r0.20.2/fair_scheduler.ht
ml, 2015.

[5] R. Boutaba, L. Cheng, and Q. Zhang, “On cloud
computationalmodels and the heterogeneity challenge,”
J. Internet Serv. Appl.,vol. 3, no. 1, pp. 1–10, 2012.

[6] T. Condie, N. Conway, P. Alvaro, J. Hellerstein, K.
Elmeleegy, andR. Sears, “MapReduce online,” in Proc.
USENIX Symp. Netw. Syst.Des. Implementation, 2010,
p. 21.

[7] J. Dean and S. Ghemawat, “Mapreduce: Simplified data
processingon large clusters,” Commun. ACM, vol. 51,
no. 1, pp. 107–113, 2008.

[8] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S.
Shenker,and I. Stoica, “Dominant resource fairness: Fair
allocation of multiple resource types,” in Proc. USENIX
Symp. Netw. Syst. Des. Implementation, 2011, pp. 323–
336.

[9] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F.
Cetin, andS. Babu, ”Starfish: A self-tuning system for
big data analytics,”in Proc. Conf. Innovative Data Syst.
Res., 2011, pp. 261–272.

[10] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, and K.
Talwar,“Quincy: Fair scheduling for distributed
computing clusters,”in Proc. ACMSIGOPS Symp. Oper.
Syst. Principles, 2009, pp. 261–276.

[11] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang. “Multi-
resource allocation: Flexible tradeoffs in a unifying
framework,” in Proc. IEEEInt. Conf.Comput. Commun.,
2012, pp. 1206–1214.

[12] J. Polo, C. Castillo, D. Carrera, Y. Becerra, I. Whalley,
M. Steinder,J. Torres, and E. Ayguad_e, “Resource-
aware adaptive schedulingfor MapReduce clusters,” in

Proc. ACM/IFIP/USENIX Int. Conf.Middleware, 2011,
pp. 187–207.

[13] A. Rasmussen, M. Conley, R. Kapoor, V. T. Lam, G.
Porter, and A.Vahdat, “ThemisMR: An I/O-Efficient
MapReduce,” in Proc.ACM Symp. Cloud Comput.,
2012, p. 13.

[14] A. Verma, L. Cherkasova, and R. Campbell, “Resource
provisioningframework for MapReduce jobs with
performancegoals,” in Proc. ACM/IFIP/USENIX Int.
Conf. Middleware, 2011,pp. 165–186.

[15] D. Xie, N. Ding, Y. Hu, and R. Kompella, “The only
constant ischange: Incorporating time-varying network
reservations in datacenters,” in Proc. ACM SIGCOMM,
2012, pp. 199–210.

[16] Y. Yu, M. Isard, D. Fetterly, M. Budiu, _ U. Erlingsson,
P. Gunda,and J. Currey, “DryadLINQ: A system for
general-purpose distributeddata-parallel computing using
a high-level language,”in Proc. USENIX Symp. Oper.
Syst. Des. Implementation, 2008,pp. 1–14.

[17] M. Zaharia, D. Borthakur, J. SenSarma, K. Elmeleegy,
S. Shenker,and I. Stoica, “Delay scheduling: A simple
technique for achieving locality and fairness in cluster
scheduling,” in Proc. Eur. Conf.Comput. Syst., 2010, pp.
265–278.

[18] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz,
and I. Stoica, “Improving MapReduce performance in
heterogeneous environments, ”in Proc. USENIX Symp.
Oper. Syst. Des. Implementation,2008, vol. 8, pp. 29–
42.

Paper ID: NOV151460 1251

