
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 11, November 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Implementation of KL Algorithm for Partitioning
using Perl

Swapnil D. Ninawe
1
, Pranali D. Surkar

2

1Assistant Professor, E&C Department, PIET, Nagpur, Maharashtra, India

2Assistant Professor, E&C Department, PIET, Nagpur, Maharashtra, India

Abstract: This paper presents the implementation of KL algorithm for circuit partitioning using PERL. Circuit partitioning is NP hard

problem. To solve the circuit partitioning problem, heuristic iterative algorithm is used. The algorithm treats the circuit as a graph, logic

gates as nodes and interconnecting nets as edges. It randomly generates the initial partition of the circuit. The text file is used as an

input which contains list of nodes and adjacency matrix of edges. The complete algorithm is implemented using arrays and associative

arrays in PERL. Associative arrays are used to store the initial partition, improvement values, gain values and final partition. Nodes are

stored as keys of associative arrays. The output file is generated which contains final partitions. This process helps to reduce the

computation time of this iterative algorithm.

Keywords: Circuit partitioning, KL Algorithm, two-way partitions, improvement values, gain values, associative arrays and adjacency
matrix.

1. Introduction

From last 50 years, Moore‟s law [1] – [2], at every two year
double the number of transistors could be fitted on a single
chip of silicon has held true. Due to exponential growth in
technology, millions of transistors are now present in an
ASIC Design. It is an impractical approach to build such
design manually, so automation of design process by using
computer-aided design tools is the better solution. Such
design tools can evaluate complex design conditions and
also tries to find the bottleneck of the problem. Each and
every steps in the ASIC Design flow is equally important to
get the specific speed, area and power. To deal with such
larger design, determining the hierarchy of the design and
dividing it into smaller parts plays an important role. The
speed of the circuit, its power consumption, its area and its
reliability depend severely on the way the circuit is laid out.
The complete physical design flow is important; this paper
covers the first step in the process called Circuit Partitioning.
An efficient partitioning algorithm is important to solve the
large and complex design problem. There are different
„heuristic‟ techniques [3] are available to generate
approximate solution to the partitioning problem. In this
paper, Kernighan-Lin algorithm is implemented for
partitioning. In this paper, the scripting language Perl is used
to implement KL algorithm. As Perl does not need a
compiler and linker to run the working code; it gives the
quick solution to the partitioning problem. Hence this paper
gives faster solution to partitioning problem even if it is NP
hard.

In this paper, we present the implementation of KL
Algorithm using data structures like arrays and hashes. For
this, we use Perl. Section II describes the concept of
partitioning and its importance in the design flow. Section
III explains the KL algorithm for two way partitioning.
Section IV describes the data structures used to implement
the algorithm. There are some future scope like k-way
partitioning and weighted edges partitioning is possible
using KL algorithm has been discussed in Section IV.

2. Circuit Partitioning

The size and complexity of the ASIC designs increasing
rapidly as millions of transistors in a single chip increasing
each years, efficient partitioning techniques are better
solution to solve these problems. Circuit partitioning divides
the given circuit into two or more parts; such that the
weights associated with the signal interconnects is minimum
while maintaining a given balance criterion among the part
sizes [4]. It is normally composed as the graph partitioning
problem. These circuits can be properly modeled by
hypergraphs. The partitioning problem is an NP-hard
problem; this means use of polynomial-time algorithm for
solving such problem is not preferable. Heuristic techniques
has been used to generate approximate solutions for
hypergraphs partitioning problem.

In the ASIC design flow, partitioning is the first step. Hence
it means it is most important step as rest of ASIC Design
flow steps directly dependent on the circuit partitioning. If
circuit partitioning is not proper; then design may have less
area but it will definitely have too much interconnection
wire. As technology is continuously shrinking;
interconnection delays is major contributing element in total
delays. If we try to minimize the interconnect delays then it
may have uneven partitions in size. To avoid such kind of
undesirable partitioning results; various partitioning
algorithms have been created. Generally, it can be expected
to get good partitions results; which having minimum wire
delays and maintaining area constraints with all partitioning
algorithms. But time is an important factor in deciding the
specific partitioning algorithm. Basically, the main task of
circuit partitioning algorithm is to minimize the number of
cuts and to minimize the deviation of nodes (which can be
inputs, outputs, logic gates etc.) assigned to each partitions.
There are various heuristic techniques available to solve the
circuit partitioning problem. These can be deterministic or
stochastic algorithms based on decision making solutions.
Deterministic decisions have been made to get the solution
using deterministic algorithm while random decisions have

Paper ID: NOV151439 1503

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 11, November 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

been made in the search of solution in stochastic algorithm.
Even heuristic algorithm can also be constructive or
Iterative. In constructive heuristic; a seed component is used
initially and other components are added to obtain the
complete solution in the partial solution. In iterative
heuristic; two inputs including problem instance description
and its initial solution has been received. Then it tries to
modify the current solution by improving the cost function.
If the new cost is better than old one; then new one is used
otherwise the solution may or may not be accepted, it
depends on exact search method used in algorithm.

3. KL Algorithm

Generally, partitioning problem consider the circuit as a
graph. The graph bisection problem is NP-hard, and to get
good partitioning results of the problem, creation of
effective heuristic algorithms must be required [5]. In this
paper Kernighan-Lin algorithm is applied to the circuit
partitioning problem. This algorithm first convert the circuit
into its corresponding graph by treating logic gates as
vertices and their interconnection is replaced by edges
between the corresponding vertices of the graph. The K-L
heuristic algorithm is an iterative improvement procedure.
First initial partition is carried out and then it tries to
improve the bisection further. To find a minimal-cost
partition of a given graph of 2n vertices (of equal size) into
two subsets of n vertices each [6]. This section provides the
solution of the two-way partitioning problem.

KL algorithm randomly generates the initial partition and
two sub-circuits P1 and P2 is created. If the given graph has
2n vertices (circuit has 2n gates), the first n vertices are
taken into subset P1, and the remaining n vertices are taken
into subset P2. This paper deals with only even number of
vertices. Then only it can be divided into same number of
vertices for each partition P1 and P2. If the circuit has odd
number of vertices then we have to twist the algorithm by
assuming one extra dummy node. Here the objective of this
section is to minimize the number of edges which are cut by
the partition. Suppose there is an edge exists between two
nodes A and B in the graph. It means A and B are some
logic gates and there is an interconnection between them.
Now, the first thing to check that these two nodes are in
same sub-circuits or in different sub-circuits. If nodes A and
B are in same sub-circuits then that edge between them is
cut; otherwise it can be considered as a cut. To get the better
and improved new solutions from the current one; subset of
nodes from sub-circuit P1 must be swap with subset of
nodes from sub-circuit P2. These two subsets must be of
same size otherwise it will create an imbalanced two-way
partitioning.

KL algorithm basically concentrates on selecting vertices at
a time; but it does not swap one pair of nodes at a time. This
algorithm temporarily swap a single pair of nodes from
different sub-circuits at a time; but the main motive of these
swapping is to get a subset of nodes to be swapped on a
permanent basis. First step is to find the cut and uncut edges
for each node in the graph. For each node say A in the
circuit; we have to find out two cost values, EA and IA. EA is
the set of A‟s incident edges that are cut by the cut line, and
IA is the set of A‟s incident edges that are uncut by the cut

line. We can say that, the total number of edges attached to
A is the sum of EA and IA; which is also called as the degree
of node A. Suppose that C number of edges are cut due to
initial partition. Assume node A is in partition P1 initially;
and we are moving it from partition P1 to P2, the change in
C will be

DA = EA-IA (1)

So by moving node A from one partition P1 to other
partition P2, we will get new number of cut edges and that
will be C-(EA-IA). This happens due to movement of node A
from one to another, edges attached to node A that was cut
before will be uncut edges now and uncut edges will become
cut edges. DA is an improvement for node A; if it is positive
improvement then it will reduce the cut size otherwise it will
increase the cut size.

To find the set of nodes in the graph to be swapped between
sub-circuits, a series of node pair-swaps has been used by
the KL algorithm. Let us assume that nodes A and B are
present in partition P1 and partition P2 respectively. The
gain of swapping a pair of nodes A and B is

 ∆g = DA + DB - 2 * c(A,B) (2)

where c(A,B) is the connection weight between A and B; if
an edge exists between nodes A and B, then c(A,B) = edge
weight (here 1), otherwise, c(A,B) = 0. This equation shows
how the edge between A and B is taken into consideration.
The gain considers the interconnection edges twice in
improvement equation, once for each node. Even if we swap
the nodes A and B, the interconnection edge is going to be
cut in both situation and hence we have to consider it in the
gain equation.

Once all the improvement Dnode values for all nodes are
calculated; we can calculate the gain values for all swapping
pairs of node. But the important thing is this swapping is not
permanent, it‟s just tentative swapping and actual movement
of nodes between partitions does not takes place. Before
proceeding with the process, the total number of cut edges
which can be termed as cutsize must be recorded as initial
cutsize. Now we have the list of all gain values; now sort the
list of nodes pairs into the descending order for both the
partitions P1 and P2 and then select the pair with the greatest
improvement. Then tentative swapping of these two nodes A
and B are performed and calculate the reduction in cutsize.
Here it is important to update all the improvement values for
any node which is attached to node A or node B. If the node
A was previously attached with node X and that
interconnecting edge was a cut edge, improvement of node
X has to be reduced by one; and if it was uncut edge then
improvement has to be increased by one. The gain values of
any pair of nodes which also contains node X has been
updated and the sorted list in descending order is also
updated.

Now we have to mark nodes A and B has been swapped;
actually it‟s not swapped yet but temporal swapping also we
have to note down and deleting the pair of nodes in the
sorted list which contains these two nodes as the node which
has been swapped with another node, cannot swap it again

Paper ID: NOV151439 1504

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 11, November 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

for the second time. And make record of this pair of nodes
along with new total number of cutsize obtained after the
temporal swapping of these two nodes. After updating the
improvement values along with the gain values of remaining
pairs and sorted list of pairs of nodes; select the pair of
nodes with the largest gain value and repeat the previous
steps again. Again do the temporal swapping of two nodes
and record the required results. This nodes pair selection
process is continued till all the available pairs are taken into
consideration. This process causes each node to be swapped
tentatively with another node in the other partition. If actual
swapping of nodes pairs had been done, then we would get
the same partition from where we started. If we have 2n
nodes in the graph (means 2n logic gates in the circuit); a list
of n tentative swaps has been recorded along with its cutsize
for each pair. To find out the minimum cutsize; we have to
determine the set of nodes to be swapped from the tentative
nodes swaps list. Compare the cutsize recorded at each
swaps with the initial cutsize. The maximum positive gain
Gm corresponds to the best prefix of m swaps within the
swap sequence of a given pass. These m swaps lead to the
partition with the minimum cut cost encountered during the
pass. Gm is computed as the sum of Δg values over the first
m swaps of the pass, with m chosen such that Gm is
maximized.

 Gm = ∑ ∆g (3)
More positive Gm means minimum value of cutsize. So if the
cutsize is minimum as compared to initial cutsize, then
actual swapping has been performed from the start of the list
of tentative m swaps and all the nodes pairs has been
included which gives the minimum cutsize. If the minimum
cutsize is not less than or equal to the initial one; the
algorithm has been terminated.

All this process discussed previously represent just one
iteration of the Kernighan-Lin heuristic iterative algorithm.
After getting the set of nodes to be swapped, the algorithm
do the complete process again, re-computing all the
improvement and gain values and calculate again the
maximum positive gain and minimum cutsize. This iteration
is continued till no improvement is possible and then the
entire algorithm stops. In this way, the KL algorithm is
typically an iterative-improvement algorithm.

4. Data Structures

The choice of data structure strongly depends on the cost
functions, gains, and the characteristic of VLSI circuitry [7].
In this paper, Kernighan-Lin algorithm is implemented using
PERL (Practical Extraction and Report Language). It is very
powerful and flexible language which supports so many
functions of a high-level programming language such as C.
Even we can say that PERL borrowed so many features from
C itself. The main reason of using PERL is that unlike other
languages, it does not require special compiler and linker to
turn the programs written into working code [8]. In PERL,
we have to write the program and run it. So it produces the
quick solutions and the computation time is less and hence
in this paper to get the quick response, we use data structures
in PERL to implement the KL algorithm. Even in VLSI
industries PERL language is used for report generation and
data handling. So it will help to resolve the compatibility
issues. As KL algorithm is a heuristic iterative algorithm,

PERL provides flexibility and quick response which reduces
the computation time of the algorithm.

KL algorithm takes a text file as an input which includes
information like total number of nodes in the graph (means
total number of logic gates in the circuit), list of nodes and
the elements of adjacency matrix representing the graph to
be partition. These elements of adjacency matrix tells there
is interconnecting net (edge) available between the nodes or
not. This algorithm also produces output in the text file only.
So it helps to handle the results if it is required in other
process and it is recorded permanently. To read and write to
files we should create something called handles which refer
to the files and to create the handles we use the OPEN
command. This handle will be used for reading and writing.
Each line from the input file is being real and processed by
storing in the scalar variable. The contents of input file for 8
nodes are as follows:

Number of nodes - 8

The list of nodes – {1 2 3 4 5 6 7 8}

Two dimensional Adjacency graph -

0 1 0 0 1 1 0 0
1 0 0 0 1 1 0 0
0 0 0 1 0 1 1 1
0 0 1 0 0 0 1 1
1 1 0 0 0 1 0 0
1 1 1 0 1 0 0 0
0 0 1 1 0 0 0 1
0 0 1 1 0 0 1 0

The main data structures used in implementing KL
algorithm are arrays and hashes in PERL. An array holds a
list of scalar values of different types. When a list is
assigned to an array variable, an element of that array
variable can be accessed as a scalar variable. In KL
algorithm, arrays are mostly used to store the temporary
values while finding the maximum values of improvement
and gain. But using arrays in every situation is complicated
as it is important to store the information of each elements.
Hence there is different kind of array is available in PERL,
which can access array variables by using any scalar value.
Such arrays are called associative arrays (hashes). In
associative arrays, the index is referred to as a key and the
corresponding element as a value. This key-value pair makes
the task easier as index also stores the information of
elements type. Most of the processes are handled by
associative arrays. Initial partition, improvement values and
gain values are stored in hashes only. Nodes are stored as
keys and its respective values are stores as values. Even
updation of improvement values after completing iteration is
also stored in hashes. Hashes to arrays and arrays to hashes
conversion and the „reverse‟ function in hashes which
reverse the roles of keys and values provides flexibility to
the implementation.
Output file contains the initial partition of the nodes, the
final partition of nodes, the adjacency matrices of new
generated partitions and the cutset (the set of edges to be
cut). The contents of output file after implementing KL
algorithm on the input given above are as follows:
 Number of nodes in graph - 8

Paper ID: NOV151439 1505

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 11, November 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 The list of nodes – {1 2 3 4 5 6 7 8}
*************INITIAL PARTITION************
 First partition: {1 2 3 4}
 Second partition: {5 6 7 8}
*************FINAL PARTITION**************
 First partition: {6 1 2 5}
 Second partition: {8 4 3 7}
Adjacency matrix for partition 1 is:

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

Adjacency matrix for partition 2 is:
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

The cutset is: {{6, 3}}

5. Future Scope

This paper discussed the solution of two-way circuit
partitioning problem on a set of 2n nodes (logic gates). But
the KL algorithm using PERL can also be extended to
perform k-way partitions on a set of kn objects, using the
same two-way process as a basic tool. There is a chance to
partition the graph into k sets of size n; as we have KL
heuristic algorithm for partitioning bisection. Firstly the
graph is divided into two partitions P1 and P2 by our
algorithm. There is a scope to consider each partition as a
complete graph and apply the two-way partitioning KL
heuristic algorithm to get 4-way partitioning. Again we can
assume each partition as a complete graph and do the same
to get the required k-way partitions. Even in this paper, we
assume the weights of the edges are same. But it is not
necessary that the cost of all interconnection nets are same;
so the algorithm is also extended to solve the different
weighted edges partitioning problems. It can be possible by
considering the weights in computing improvement and gain
values.

6. Result and Conclusion

The KL algorithm for two-way partitioning is implemented
using data structures like arrays and associative arrays
(hashes) in Perl. List of nodes and interconnecting nets is
stored in the text file. This text file is taken as input file and
the new partition is stored in output file. Text files are
handled by filehandles. This implemented KL algorithm is
used to solve various circuit partitioning problems. The
partition of odd number of nodes is also handled by this
implemented KL algorithm using dummy nodes. As the KL
algorithm is implemented using PERL, the computation time
is less and information is easily available and stored for
other VLSI applications. The number of edges for the circuit
consider in this paper has been reduced from 9 to 1 using our
implemented KL algorithm.

References

[1] G. Moore, “Cramming more components onto

integrated circuits” Electron. Mag., vol. 38, no. 8, pp.

114–117, Apr. 19, 1965.
[2] R. R. Schaller, "Moore‟s law: Past, present, and future,"

IEEE Spectrum., pp. 52–59, Jun. 1997.
[3] B. Krishnamurthy, “An improved min-cut algorithm for

partitioning VLSI networks,” IEEE Transactions on
Computers,” C-33, 5, pp.438-446, 1984.

[4] Ali Dasdan and Cevdet Aykanat, “Two Novel Multiway
Circuit Partitioning Algorithms Using Relaxed
Locking”, IEEE Transactions On Computer-Aided
Design Of Integrated Circuits And Systems, Vol. 16,
No. 2, February 1997.

[5] Shin'ichi Wakabayashi, Kazunori Isomoto, Tetsushi
Koide, Noriyoshi Yoshida, “A Systolic Graph
Partitioning Algorithm for VLSI Design”, IEEE
International Symposium on Circuits and Systems, vol.
1, pp. 225-228, 1994.

[6] B. W. Kernighan and S. Lin, “An Efficient Heuristic
Procedure for Partitioning Graphs”, The BELL System
Technical Journal, February 1970.

[7] Sao-Jie Chen and Chung-Kuan Cheng, “Tutorial on
VLSI Partitioning”, the Gordon and Breach Science
Publishers (Overseas Publishers Association), VLSI
Design, Vol. 00, No. 00, pp. 1 – 43, 2000.

[8] Larry Wall, Tom Christiansen, Jon Orwant
“Programming Perl, 3rd Edition”, July 2000.

Paper ID: NOV151439 1506

