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Abstract: The life cycle of new product is becoming shorter and shorter in all markets. Given these short product life cycles, product 

demand is increasingly difficult to forecast. Furthermore, demand is never really stationary because the demand rates evolves over the 

life of the product. In this paper, we consider the problem of where in supply chain to place strategic safety stocks to provide a high level 

service to the final customer with minimum cost, and extend the model for stationary demand to the case of stationary demand, as 

might occur for products with short life cycles. We assume that we can model the supply chain as a network that each stage in the 

supply chain operates with a periodic reviuw base-stock policy, that demand is bounded and that there is guaranteed service time 

between every stage and its customers. This study uses the analytic solver program in excel that does the randomization process on the 

variable demand. 
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1. Introduction 
 
Manufacturing firms are introducing new products at a higher 
frequency with increasingly shorter life cycles. For each new 
product, a firm must determine its supply chain and the 
associated operating policies to match supply to the demand 
to achieve the most revenue with the least cost. A major 
complication is that the demand process evolves over the 
product life cycle and is never stationary. 
 
The product life cycle of a new product typically consists of 
four phases: (i) a product-launch phase in which the product 
is introduced to the market; (ii) a demand-ramp phase over 
which the demand rate grows rapidly; (iii) a peak-demand 
phase during which the product sells at its maximum rate; 
and (iv) an end-of-life phase during which the product 
demand declines as it is removed from the market. 
 
The demand rate is never stationary because the product 
moves from one life-cycle phase to another. This research 
examines the problem of locating safety stocks in a supply 
chain in a way that accounts for uncertain, nonstationary 
demand processes. Given the inherent complexity of 
modeling nonstationary demand processes, we seek a 
pragmatic approach that requires approximations and 
compromises to get results that might apply in practice. We 
use the modeling framework from Graves and Willems 
(2000) (referenced as G-W) and introduce a nonstationary 
demand model. We show that the G-W safety stock 
placement optimization applies to this case of nonstationary 
demand. 
 
In the remainder of this section, we briefly discuss related 
literature. In §2, we present the key assumptions for 
modeling a supply chain and its nonstationary demand. In §3, 
we extend the G-W model to accommodate nonstationary 
demand. In §4, we examine a simple example to explore the 
near optimality of a constant service time (CST) policy. 
 
Related Literature: Relative to the stationary-demand 
inventory literature, there is much less work for nonstationary 

demand. We characterize this work by how the nonstationary 
demand is specified and whether the work focuses on 
optimization versus performance evaluation. Morton and 
Pentico (1995) and Bollapragada and Morton (1999) focus 
on setting inventory policies for a single stage facing a 
general nonstationary demand process with proportional 
holding and backorder costs. When the order cost is zero, a 
time-varying base-stock policy is optimal; for a nonzero 
order cost, a time-varying _s_ S_ policy is optimal. This 
research develops computationally efficient upper and lower 
bounds on these optimal policies. For short life cycle 
products, the challenge of accurately forecasting demand can 
be as important as determining inventory policies. 
Kurawarwala and Matsuo (1996) develop an integrated 
framework for forecasting and inventory management of 
short lifecycle products. Their approach estimates the 
parameters for a seasonal trend growth model and uses this as 
an input to a finite-horizon stochastic inventory model with 
time-dependent demands. 
 
Nonstationary demand has also been modeled as a Markov-
modulated Poisson demand process. One example is Chen 
and Song (2001), who show the optimality of echelon base-
stock policies with statedependent order-up-to levels for 
serial networks. A second example is Abhyankar and Graves 
(2001) who determine the optimal position of an inventory 
hedge in a two-stage serial supply chain that faces 
Markovmodulated demand with two states. Within the 
bullwhip literature, several papers develop models for 
nonstationary demand.  
 
Papers generally assume that each stage follows an adaptive 
base-stock policy and then analyze the effect that different 
forecasting techniques and assumed demand distributions 
have on the inventory requirements at each stage. For 
instance, Lee et al. (1997) demonstrate that the adjustment of 
order-up-to levels at the retailer amplifies the variance of the 
order signal the retailer provides for the manufacturer. Two 
other examples are Graves (1999) and Chen et al. (2000). 
 
Finally, there is a growing body of work on designing supply 
chains to handle nonstationary demand. Beyer and Ward 
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(2000) use simulation to accurately model the inventory 
requirements in a two-echelon supply chain that utilizes two 
modes of distribution and is subject to nonstationary demand. 
Johnson and Anderson (2000) investigate the benefits of 
postponement in supply chains that introduce multiple 
products with short product life cycles. Ettl et al. (2000) 
minimize the total inventory in a multistage inventory system, 
where the key challenge is to approximate the replenishment 
lead times within the supply chain. To model nonstationary 
demand, they break the horizon into a set of stationary phases 
and adopt a rolling-horizon approach where the optimization 
is performed for each demand phase. 
 
2. Supply Chain Model 
 
In this section, we present the multistage model of a supply 
chain and the optimization problem for determining 
safety stocks. 
 
Inventory Model. The single-stage inventory model serves as 
the building block for modeling a multistage supply chain. 
We adapt the standard model of Kimball (1988) (see also 
Simpson 1958) to the case of nonstationary demand. 
 
We define the inbound service time SI, as the time for stage j 
to get suppliesfrom its immediate suppliers. In each period t, 
stage j places an order equal to ϕijdj(t) on each upstream stage 
i for which ϕij>0. The time for all orders to be delivered to 
stage j dictates when stage j can commence production to 
replenish its demand. This inbound service time is 
constrained by the maximum outbound service time from the 
upstream suppliers, i.e, SIij ≥max(i,j)ϵA(Si). 
 
We assume we are given base stocks Bj(t) for each period 
t=1,2,…,H. For the stated assumptions, we can express the 
inventory at stage j at the end of period t as 

 
 
We defined the net replenishment time for stage j to be its 
replenishment time, net the stage’s promised outbound 
service time, i.e., SIj+Tj-Sj. This net replenishment time 
determines the safety stock at stage j. We always set the 
outbound service times so that the net replenishment time is 
nonnegative. 
 
The explanation for Equation (2) follows that for the case 
stationary or certainty demand. There are three transactions 
in period t:stage j completes the replenishment of its demand 
from period t-SIj-Tj; stage j fills its demand from period t-Sj; 
and stage j receives an additional replenishment equal to 
∆Bj(t)=Bj(t)-Bj(t-1) so as to have the prescribed base-stock 
level. Hence, we can write an inventory balance equation: 

 
We obtain (2) by applying (3) recursively and using the 
boundary condition Ij(0)=Bj(0). 
 
To derive Equation (2), we implicitly assume that we can 
always make the necessary adjustment ∆Bj(t) to the base-

stock level. This need not be the case when the base-stock 
level decreases and ∆Bj(t)<0; in effect, we need to assume 
that dj(t-SIj-T)+ ∆Bj(t)≥0 so that the replenishment in period t 
is nonnegative. We expect this will typically be the case, and 
we assume this to be true so as not to overly complicate the 
presentation. (We note that when dj(t-SIj-T)+ ∆Bj(t)< 0, then 
Equation (2) provides a lower bound on the actual inventory 
level.) 
 
Determination of Base Stock. For stage j to provide 100% 
service to its customers, we require that Ij(t) ≥ 0; we see from 
Equation (2) that this requirement equates to 

 
Because demand is bounded, we satisfy the above 
requirement with the least inventory by setting the base 
stock as 

 
Thus, the base-stock level in period t is the maximum 
possible demand over a time interval (t –SIj –Tj_,t –Sj) for 
which stage j filled its demand, but has yet to receive 
replenishments.  
 
Safety Stock Model. We use Equations (2) and (4) to 
find the expected inventory level E[Ij(t)]: 

 
The expected inventory represents the safety stock held at 
stage j and depends on the net replenishment time and the 
demand bound. We observe that stage j holds no safety stock 
whenever the net replenishment time is zero, i.e., SIj+Tj-
Sj=0. 
 
The supply chain will also have a work-in-process or pipeline 
inventory. This inventory corresponds to the replenishment 
of customer demand plus the planned adjustments to the 
base-stock levels. If we fix the base-stock levels for the start 
and end of the planning horizon, then we can show that the 
work in process does not depend on the choice of service 
times, but only on the average demand rates and the lead 
times at each stage. Hence, in posing an optimization 
problem, we ignore work-in-process and only model safety 
stock. 
 
Multistage Model. To model the multistage system, we use 
Equation (5) for each stage where inbound service time is a 
function of the outbound service times for the upstream 
stages. We then formulate an optimization problem to find 
the optimal service times for the planning horizon: 

 
where hj denotes the holding cost per unit per time period for 
inventory at stage j. The objective of problem P is to 
minimize the safety stock holding cost 
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over the planning horizon. The constraints assure that the net 
replenishment times are nonnegative, that each stage’s 
inbound service time is no less than the maximum outbound 
service time quoted to the stage, and that the end-item stages 
satisfy their service guarantee.3  
 
We define the planning model to end in period H and do not 
explicitly include any costs beyond this horizon. For 
instance, if H represents the end of the life cycle for a 
product, there would be disposal costs for the supply chain 
inventory left over at the end of the horizon. We could 
include a disposal cost by restating P with time-dependent 
holding costs. 
 
To solve P, we first observe that we can rewrite the objective 
function as 

 
 

 is the 
average safety stock at node j as a function of its inbound and 
outbound service times. Thus, P is equivalent to the safety 
stock optimization problem for stationary demand in G-W, 
but with its objective function expressed in terms of the 
average safety stock Gj(SIj,Sj) over the planning horizon H. 
Furthermore, Gj(SIj,Sj) is a concave function, given the 
assumption that the net demand bound gj(s,t)  is a concave 
function. As a consequence, we can solve P with the existing 
algorithms for stationary demand. G-W presents a dynamic 
programming algorithm for solving P for supply chains 
modeled as spanning trees; Humair and Willems (2006), 
Magnanti et al. (2006), and Lesnaia (2004) have each 
developed and tested algorithms for general acyclic 
networks. 
 
3. Example 
 

Ben is a purchasing agent for a large grocery store in charge 
of a new brand of canned pasta. His task is to make sure he 
always has product on hand to sell. However, due to limited 
storage space, any product being stored is subject to a $0.25 
holding cost. The lead time for an order is two weeks and 
each time an order is placed, there is a $75 shipping fee. No 
more than 1,000 cans of product can be ordered at one time. 
The cost associated with a customer coming to the store and 
not being abe to purchase the product is $125 in lost sales 
since the customer could decide to visit another grocer and 
not return. The demand for the product follows a Poisson 
distribution. Ben has created a simulation optimization model 
to determine at what point he should reorder the product 
(Reorder point) and how much to order (Order Quantity) to 
minimize total costs.  

 

 
In this study, the model function represents the difference 
between the total inventory stock subject to the demand 
indicated by: 
 

Ij(t) = Bj(t) − dj(t − SIj − Tj , t − Sj), dimana 
Bj(t) = begin inventory + shipment received 

 
Stage 1 (based on data randomization of request simulation 
1): 

Bj(t) = begin inventory + shipment received 
Bj(t) = 262 + 0 = 262 
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Ij(t) = Bj(t) − dj(t − SIj − Tj , t − Sj) = ending inventory 
Ij(t) = 262 − 68 = 194 
 
Thus obtained function model to minimize the total cost: 

 
Total holding cost = 0.25 dollar × ending inventory 
Total holding cost = 0.25 dollar × 194 = 48.50 dollar 
 
Stage 2 (based on data randomization of request simulation 
1): 
 
Bj(t) = begin inventory + shipment received 
Bj(t) = 194 + 0 = 194 
 
Where, begin inventory = 194 is data obtained at stage 1. 
Ij(t) = Bj(t) − dj(t − SIj − Tj , t − Sj) = ending inventory 
Ij(t) = 194 − 74 = 120 
 
Thus obtained function model to minimize the total cost: 

 
Total holding cost = 0.25 dollar × ending inventory 
Total holding cost = 0.25 dollar × 120 = 48.50 dollar 
 
The next stage is done in the same manner in which the stage 
j begin using the data inventory at stage j - 1, 
 
Total cost = total holding cost + total order cost 
Total cost = 1.972 dollar + 1.125 dollar = 3.097 dollar 
 
Example 2: program on the attachment (simulation 2) Stage 1 
(based on data randomization of request simulation 1): 
 
Bj(t) = begin inventory + shipment received 
Bj(t) = 262 + 0 = 262 
Ij(t) = Bj(t) − dj(t − SIj − Tj , t − Sj) = ending inventory 
Ij(t) = 262 − 70 = 192 
Thus obtained function model to minimize the total cost: 

 
Total holding cost = 0.25 dollar × ending inventory 
Total holding cost = 0.25 dollar × 192 = 48 dollar 
 
Stage 2 (based on data randomization of request simulation 
1): 
 
Bj(t) = begin inventory + shipment received 
Bj(t) = 192 + 0 = 194 
which begin inventory = 194 is data obtained at stage 1, 
Ij(t) = Bj(t) − dj(t − SIj − Tj , t − Sj) = ending inventory 
Ij(t) = 194 − 68 = 124 
Thus obtained function model to minimize the total cost: 

 
Total holding cost = 0.25 dollar × ending inventory 
Total holding cost = 0.25 dollar × 124 = 31 dollar 

The next stage is done in the same manner in which the stage 
j begin using the data inventory at stage j - 1, 
 
4. Conclusion 
 
In this study, has been introduced and developed a model of 
placement safety stock in a supply chain with stationary 
demand and demonstrated how to extend supply chain model 
with demand stationary to obtain optimal safety stock 
placement in particular in short distribution products. 
 
From ten simulations that have been done in this study, it was 
found the total cost is minimal, namely the simulation 4th 
with a total cost of 3,035 dollar, which amounted to 3981 
units total demand and total supply of 7339 units. Means the 
initial stock of goods stored the remainder of last year by 
7339 - 3981 = 3358 units. The total cost of storage for 1,835 
dollars and the total cost booking of 1,200 dollars. The more 
simulations performed so possible total cost of the smaller 
will be obtained. It relies on randomization demand, initial 
stock, and receipt of goods. 
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