
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 11, November 2015
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

A Survey on Automatic Fault Detection Framework
for Cloud based Application

Kshitija Nandgaonkar1, Swarupa Kamble2

1Dept. of Computer Engineering, RMD Sinhgad School of Engineering, Pune, Maharashtra, India

2Assistant Professor, Dept. of Computer Engineering, RMD Sinhgad School of Engineering, Pune, Maharashtra, India

Abstract: Cloud computing becoming an emerging and important platform for web service applications. In modern era Cloud
Computing has its own challenges. Sometimes it’s the fluctuating workload which presses the application to different and unexpected
condition. Also the behavior of the cloud hosted application makes it difficult to understand the root cause of failures which results in
loss of time and money. Even if the risks are known , it becomes very difficult for the manual operators to resolve them, as an
application could go down if things are not done properly. For addressing these issues, this paper proposes an automatic failure
detection framework for the cloud based applications. In particular, we introduce an clustering method that captures workload
fluctuation and model the correlation between the workloads and application performance.

Keywords: Cloud computing, Web application, fault diagnosis, workload fluctuation, canonical correlation analysis.

1. Introduction

Cloud Computing is one of the most used technology in
ecommerce sector. In recent years, many web applications
are deployed on public cloud computing platforms. But the
development and deployment of Web applications are
vulnerable to many types due to the complexity, dynamism
and openness of cloud computing. These faults cause an
application failure which affects a large population of users
and results in heavy economic loss. Detecting faults accounts
for 75% of failure recovery time, and detecting faults in time
could prevent 65% of failures, according to the report of
Tellme Networks [1]. Thus, fault diagnosis is essential to
guarantee the reliability and performance of Internet-based
services. However, the faults inside Web applications (e.g.,
resource contention, configuration faults, software faults, and
hardware failures) are usually triggered by complex factors in
the deployment environment at runtime. This makes it
difficult to reproduce the faults (e.g., deadlock caused by
concurrency and fault transmission between components).
Therefore, debugging and testing Web applications cannot
effectively eliminate the inevitable faults triggered in specific
contexts.

Fault diagnosis technologies have widely attracted the
attention of industrial and academic communities in recent
years. For example, commercial monitoring tools (e.g., IBM
Tivoli, HP OpenView, and Amazon CloudWatch) allow
system operators to set rules for some particular system
metrics manually. Then they raise alerts automatically when
the value of a metric exceeds the predefined threshold.
However, setting suitable thresholds for thousands of metrics
in various Web applications is difficult. Similarly, by
modeling the status of distributed systems during their
normal operation periods, traditional fault diagnosis methods
can detect faults when the monitored status deviates from the
built model [2]. However, existing solutions are difficult to
detect faults in Web applications deployed in a large-scale
dynamic cloud computing environment due to the following
reasons.

First, cloud computing systems usually provide services
using a virtualization technique which causes an application
models to be changed from time to time with dynamic
workloads and resource allocation. This will be very
challenging for fault diagnosis methods to model the status of
applications and differentiate their abnormal behaviors from
normal ones.

Second, Web applications are often set up in a large scale
data center consist of thousands of nodes. Thus fault
diagnosis methods found it difficult to model applications
involving a large number of metrics taken from many layers.

For addressing such issues, we propose a Fault Diagnosis
Framework for Web Applications in cloud Environment,
which automatically detect faults and locate their root causes.

2. Overview

In particular, we introduce an online incremental clustering
method that will capture workload fluctuation, and make a
use of canonical correlation analysis (CCA) which model the
correlation between the workloads and the metrics of
application performance/resource utilization in each
particular access behavior pattern.

The main contributions of this paper are as follows:
 We propose an online incremental clustering method to

comprehend the access pattern of customers. As a result,
the accuracy of fault diagnosis in each specific access
behavior pattern can be improved significantly.

 We use CCA to model the correlations between workloads
and metrics automatically.

 We introduce a fault diagnosis conceptual framework
which can be mostly used to diagnose faults inside Web
applications deployed in cloud computing environment.

Paper ID: NOV151314 1063

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 11, November 2015
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

3. Existing Methodology

Fault detection/diagnosis for distributed systems has acquired
a large attention in academic and industrial areas. Existing
methods involves a signature-based methods and anomaly
detection methods (including behavior-based methods and
metric correlation-based methods). Nowadays, some
comparable studies are conducted on cloud computing
systems. Additionally, some scientists also focus only on
performance metrics, and introduce performance anomaly
detection methods. In this section, we methodically study
these methods, and discuss their pros and cons.

3.1 Signature-Based Fault Diagnosis

In this category, detection of fault depends upon a specific
set of rules. In short it define the signatures of known faults,
and detect faults by matching a specific set of rules.

For example, system operators usually collects monitoring
data, set of rules and generates an alert using commercial
monitoring tools like HP OpenView and IBM Tioli.
Whenever values of metrics exceed their predefined
threshold values, alerts are generated automatically.
However, in complex system it is very difficult task of setting
appropriate thresholds for so many metrics. Chen et al. [5]
stored historical failures and retrieved similar instances in the
occurrence of a failure. The failure characteristics were
described as an invariant network [5]. These methods are
effectual when the signatures of faults are properly defined.

But, it is difficult to identify unknown fault separately,
however, our method can detect unknown faults by using
correlation model between workloads and metrics based on
monitoring data. This can be achieved by tracking the
correlation change without prior knowledge about
applications and symptoms.

3.2 Behavior-Based Fault Diagnosis

In this category the behaviors of applications is modeled
(e.g., component interactions and execution paths), and
detect faults by understanding the behavior deviation from
the built model. For example, Chen et al. [6] represented the
execution paths using a probabilistic context-free grammar.

The paths were considered as anomalies if they cannot be
parsed by the grammars [6]. Barham et al. [7] used clustering
to group paths, and the ones were treated as abnormal if they
did not fit the built clusters. Chen et al. [8] used statistics to
periodically analyze interactions between one component and
the others using χ2-test. These methods have capacity to
detect application-level faults. However, they cannot detect

the faults caused by resource contention. In this paper, we
analyze the system-level metrics which indicate the resource
utilization. Therefore, our method is capable of locating the
suspicious resource utilization which probably causes the
faults.

3.3 Metric Correlation-Based Fault Diagnosis

This type of methods generates alerts when the represented
hidden invariant relationships among system metrics were
lost. For example, Jiang et al. [9] collected the metric
correlations with the autoregressive linear regression with
exogenous input models, and proposed two algorithms that
speed up the discovery of correlations. However, the above
methods can be applied to diagnose faults inside some
applications without domain knowledge, but modeling
various correlations among a large amount of metrics in
complex systems is difficult. As the workload fluctuates and
the access behavior pattern varies, the metric correlation
changes significantly.

3.4 Performance Anomaly Detection

Methods of this category pay attention to system
performance [3]–[4]. They built models to predict the
expected performance metrics, and compared them with the
online monitored ones. Such methods require domain
knowledge (e.g., the system internal structure) and accurate
parameters (e.g., component service time), which are difficult
to obtain in practice. Similarly, we can use a tree augmented
naïve Bayes (TAN) to identify which system-level metrics
were correlated with the high-level performance service level
object (SLO) violations. The work aims at finding critical
metrics which have an important impact on SLO instead of
tracking the system status to detect anomalies. Differently,
our method automatically models correlations and detects
unseen anomalies by analyzing historical data without
domain knowledge and fine-grained parameter estimation.

4. Conceptual Framework

This section describes the conceptual framework of our
automatic fault diagnosis method, which can be widely used
in cloud computing systems to diagnose faults inside Web
applications. There are four components in a fault diagnosis
method, which includes system monitoring, status
characterization, fault detection, and fault localization.
Accordingly, this framework is composed of five
components, as shown in Fig. 1.

Paper ID: NOV151314 1064

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 11, November 2015
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 1: Fault detection /diagnosis Architecture

4.1 Monitoring Agent

A monitoring agents collect monitoring data from various
layers of applications (e.g., host metrics, VM metrics,
performance metrics, and workloads), and send them to the
data processing engine for preprocessing. We can use the
interfaces provided by operation systems and virtualization
platforms to monitor the system-level metrics. The monitor
agent can be any third party software which will monitor the
application over cloud and provide us the logs which will
contain the measuring parameters like CPU utilization,
Memory utilization etc.

4.2 Data Processing Engine

The data processing engine processes the monitoring data
online, and sends the preprocessed data to the status tracker
for further analysis. In short it reads the data given by
monitoring agent, preprocesses it, removes duplicate entry
and make it ready for next stage. The engine includes two
components: 1) a cluster data collector and 2) data
processors. The former collects monitoring data from
monitoring agents deployed on different servers. The latter
preprocesses the collected monitoring data by standardizing
items, clearing outliers, rectifying faults, and eradicating
duplicated data. It extracts useful data required by the fault
diagnosis methods from various layers.

4.3 Status Tracker

The status tracker characterizes system status based on
statistical models with collected monitoring data. Since
workloads influence application performance/resource
utilization, we characterize system status by correlating
workloads and metrics with CCA. Thus, we just track the
correlation coefficients to determine whether the system is
healthy.

4.4 Fault Locator

The fault locator detects faults online by tracking the change
of the characterized system status, and then locates the
suspicious metrics related to the faults by comparing the
multidimensional monitoring data collected before and after
the faults are detected. In this paper, we detect the abrupt
changes of coefficients with EWMA control charts which do
not require domain knowledge. Then, we adopt a feature
selection method combining ReliefF and SVM-RFE to locate
abnormal metrics by analyzing the variation of multiple
metrics automatically.

4.5 Fault Actuator

The fault actuator can use VM technologies to mitigate the
consequences of faults through the adjustment of the resource
allocation in the virtualized cloud computing platform. Once
we know the root cause and its resolution, system will
automatically resolve this and bring application to healthy
status.

5. Conclusion

In this paper, we present an automatic fault diagnosis
framework for Web applications in cloud computing. We
propose an online incremental clustering method to recognize
access behavior patterns, and then use CCA to model the
correlations between the workloads and the metrics related to
the application performance/resource utilization in each
specific access behavior pattern. The system improves the
accuracy of fault diagnosis in the dynamic environment of
cloud computing. Finally, fault diagnosis framework detects
and locates faults without domain knowledge, which is
suitable for managing large-scale cloud computing systems.

Paper ID: NOV151314 1065

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 11, November 2015
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

References

[1] D. Oppenheimer, A. Gananpathi, and D.A. Patterson,
“Why do Internet services fail, and what can be done
about it?” in Proc. 4th Symp. Internet Technol. Syst.,
Seattle, WA, USA, 2003, pp. 1–16.

[2] G. Jiang, H. Chen, and K. Yoshihira, “Modeling and
tracking of transaction flow dynamics for fault
detection in complex systems,” IEEE Trans. Depend.
Secure Comput., vol. 3, no. 4, pp. 312–326, Oct./Dec.
2006.

[3] Y. Zhang, Z. Zheng, and M. R. Lyu, “An online
performance prediction framework for service-oriented
systems,” IEEE Trans. Syst., Man, Cybern., Syst., vol.
44, no. 9, pp. 1169–1181, Sep. 2014.

[4] S. Zhang, K. R. Pattipati, H. Zheng, X. Wen, and C.
Sankavaram, “Dynamic coupled fault diagnosis with
propagation and observation delays,” IEEE Trans. Syst.,
Man, Cybern., Syst., vol. 43, no. 6, pp. 1424–1439, Nov.
2013.

[5] H. Chen, G. Jiang, K. Yoshihira, and A. Saxena,
“Invariants based failure diagnosis in distributed
computing systems,” in Proc. 29th IEEE Symp. Rel.
Distrib. Syst., New Delhi, India, 2010, pp. 160–166.

[6] M. Y. Chen et al., “Path-based failure and evolution
management,” in Proc. 1st Symp. Netw. Syst. Design
Implement., Berkeley, CA, USA, 2004, pp. 23–36.

[7] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier,
“Using magpie for request extraction and workload
modelling,” in Proc. 6th Int. Symp. Oper. Syst. Design
Implement., Berkeley, CA, USA, 2004, pp. 18–31.

[8] H. Chen, G. Jiang, C. Ungureanu, and K. Yoshihira,
“Failure detection and localization in component based
systems by online tracking,” in Proc. 11th ACM
SIGKDD Int. Conf. Knowl. Disc. Data Min., Chicago,
IL, USA, 2005, pp. 750–755.

[9] G. Jiang, H. Chen, and K. Yoshihira, “Modeling and
tracking of transaction flow dynamics for fault detection
in complex systems,” IEEE Trans. Depend. Secure
Comput., vol. 3, no. 4, pp. 312–326, Oct./Dec. 2006.

[10] Y. Tan, H. Nguyen, X. Gu, C. Venkatramani, and D.
Rajan, “PREPARE: Predictive performance anomaly
prevention for virtualized cloud systems,” in Proc. 32nd
Int. Conf. Distrib. Comput. Syst., Macau, China, 2012,
pp. 285–294.

Author Profile

Kshitija Nandgaonkar received B.Tech. degree in
Information Technology in 2013 from Government
College of Engineering Amravati(An Autonomous
Institute of Government of Maharashtra) and pursuing
M.E. from RMDSSOE, Warje, Pune.

Swarupa Kamble is working with RMDSSOE, Warje,
Pune as an Assistant Professor. She has experience of 5
yrs in the field of teaching and research and her
research interests are Image Processing and Data

Mining.

Paper ID: NOV151314 1066

