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Abstract: In this paper, we have discussed the symmetries of the energy-momentum tensor (𝑻𝒂𝒃) for the Linet-Tian metric. We have 

obtained different constraint equations on energy-momentum tensor (𝑻𝒂𝒃). If we solve these constraint equations, we obtain new exact 

solutions of Einstein field equations. We have solved matter symmetries (collineations) equations for the four main cases by taking one, 

two, three and four non-zero components of the energy-momentum tensor (𝑻𝒂𝒃). We have investigated the degenerate case 

i.e. 𝒅𝒆𝒕(𝑻𝒂𝒃) = 𝟎 for one, two and three non-zero components energy-momentum tensor (𝑻𝒂𝒃) and non-degenerate case 

i.e. 𝒅𝒆𝒕(𝑻𝒂𝒃) ≠ 𝟎 for all four components of energy-momentum tensor (𝑻𝒂𝒃) are non-zero. It is observed that, this space-time have 

infinite number of matter symmetries (collineations) in degenerate case and have finite number of matter symmetries in non-degenerate 

case. It is also observed that this space-time gives seven independent matter symmetries in which three are linearly independent Killing 

vectors and the remaining are dependent. 
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1. Introduction 
 
In general theory of relativity, the gravitational field is 
described by the Einstein tensor which is contained in the 
curvature of space-time via Ricci tensor and Ricci scalar. As 
Ricci tensor enables us to understand the geometric structure 
of space-time, the energy-momentum tensor plays a 
significant role in understanding physical structure of space-
time. The gravitational field possesses the symmetries which 
are expressed in terms of Killing vector fields. The matter 
contained is represented by energy-momentum tensor. The 
space-time geometry is related to the matter contained 
through Einstein field equations [1]. The Einstein’s field 
equations (EFEs) are given by 

 𝐺𝑖𝑗 ≡ 𝑅𝑖𝑗 −
1

2
𝑅𝑔𝑖𝑗 = 𝜅 𝑇𝑖𝑗  ,                      (1) 

where 𝐺𝑖𝑗 are the components of the Einstein tensor, 𝑅𝑖𝑗 are 
Ricci tensor and 𝑇𝑖𝑗  of the matter (energy-momentum) 
tensor. Also, 𝑅 = 𝑔𝑖𝑗𝑅𝑖𝑗 is the Ricci scalar, and ⋀ = 0 for 
simplicity. The symmetries (collinetaions) play an important 
role in Einstein’s field equations (1) of general relativity [2-
5]. These symmetries can be expressed 𝐿𝑋𝑨 = 𝑩 where A 
and 𝑩 are the geometric /physical fields , X is a vector field 
generating the symmetry and 𝐿𝑋 denotes Lie derivative 
operator along with vector field X. 
 
 A vector field X is an matter collineation for matter tensor 
𝑇𝑖𝑗  if 

 ℒ𝑋𝑇𝑎𝑏 = 0 ⟺ 𝑇𝑎𝑏,𝑐𝑋𝑐 + 𝑇𝑎𝑐𝑋,𝑏
𝑐 + 𝑇𝑏𝑐𝑋,𝑎

𝑐 = 0.         (2) 
In last decades, some authors [6-13] shows keen interest in 
study of matter symmetries (collineations). M. Sharif [14-
15] has studied the cylindrically symmetric static space-time 
and static space-time with maximal symmetric transverse 
spaces according to their matter collineation. M. Salti et al 
[16] have investigated matter collineation of BKS-type 
space-time.  
 
In this paper, we have studied the matter symmetry 
properties of Linet-Tian metric with different constraint 

conditions on 𝑇𝑖𝑗 . In section 2.1, we have classified Linet-
Tian metric with degenerate case i.e. 𝑑𝑒𝑡(𝑇𝑎𝑏) = 0 by 
considering one, two and three non-zero components of 𝑇𝑎𝑏 . 
It is observed that, there are infinite numbers of matter 
symmetries (collineations) in degenerate case. In section 2.2, 
we have discussed the non-degenerate case i.e. det(𝑇𝑎𝑏) ≠ 0 
by considering four non-zero components of 𝑇𝑎𝑏 . In this 
case, there are finite number of matter symmetries. It is also 
shown that this space-time gives seven independent matter 
symmetries in which three are linearly independent Killing 
vectors and the remaining are dependent. Later, in section 3, 
we have discussed the obtained results. Lastly, conclusion is 
given in section 4. 
 
2. Matter Symmetries (collineations) Equations 
 
Consider Linet-Tian [17-18] space-time is expressed as 

   𝑑𝑠2 = −𝑓 𝑑𝑡2 + 𝑑𝜚2 + 𝑔 𝑑𝑧2 + 𝑙 𝑑𝜙2,          (3) 
where             𝑓 = 𝑄2 3⁄ 𝑃−2(1−8𝜎+4𝜎2) 3 ∑⁄ , 
                       𝑔 = 𝑄2 3⁄ 𝑃−2(1+4𝜎−8𝜎2) 3 ∑⁄ ,  
                        𝑙 = 𝑐2𝑄2𝑃4(1−2𝜎−2𝜎2) 3 ∑⁄ . 
where 𝑡, 𝜚, 𝑧, 𝜙 are usual cylindrical co-ordinates, ∑= 1 −
2𝜎 + 4𝜎2, the constant 𝜎 is related but not equal to mass per 
unit length, the constant 𝑐 > 0 is related to angle defect and 
for ∧ < 0, 

𝑃 =
2

√3|∧|
tan ℎ (𝑅), 𝑄 =

1

√3|∧|
sin ℎ (2𝑅), 𝑅 =

√3|∧|

2
 𝜚 . (4) 

In the limit ∧→ 0, the metric reduces to the Levi-Civita 
metric for which 𝑃 = 𝑄 = 𝜚. 
The non-zero components of Ricci-Tensor are 

               𝑅00 = −
𝑓′′

2
+

𝑓′2

4𝑓
−

𝑓′𝑙′

4𝑙
−

𝑓′𝑔′

4𝑔
 ,                               (5) 

               𝑅11 = −
𝑓′′

2𝑓
+

𝑔′′

2𝑔
+

𝑙′′

2𝑙
−

𝑓′2

4𝑓2 −
𝑔′2

4𝑔2 −
𝑙′2

4𝑙2 ,             (6) 

               𝑅22 =
𝑔′′

2
−

𝑔′2

4𝑔
+

𝑓′𝑔′

4𝑓
+

𝑔′𝑙′

4𝑙
 ,                                  (7) 

               𝑅33 =
𝑙′′

2
+

𝑓′𝑙′

4𝑙
+

𝑓′𝑔′

4𝑔
 ,                                            (8) 

where prime denotes differentiation with respect to 𝜚. 
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Ricci Scalar is given by  

𝑅 =
𝑓′′

𝑓
+

𝑔′′

𝑔
+

𝑙′′

𝑙
−

𝑓′2

2𝑓2 −
𝑔′2

2𝑔2 −
𝑙′2

4𝑙2 +
𝑓′𝑙′

2𝑓𝑙
+

𝑓′𝑔′

2𝑔𝑓
+

𝑔′𝑙′

2𝑔𝑙
 . (9) 

Then using Einstein Field Equations (1), non-zero 
components of stress-energy tensor 𝑇𝑖𝑗  are 

      𝑇00 = 𝑇0 =
1

𝜅
[

𝑔′′𝑓

2𝑔
+

𝑙′′𝑓

2𝑙
−

𝑔′2𝑓

4𝑔2 −
𝑙′2

8𝑙2 +
𝑓′𝑔′𝑙′

𝑔𝑙
],              (10) 

      𝑇11 = 𝑇1 = −
1

𝜅
[

𝑙′2

4𝑙2 +
𝑓′𝑙′

4𝑓𝑙
+

𝑔′𝑙′

4𝑔𝑙
+

𝑓′𝑔′

4𝑓𝑔
],                      (11) 

     𝑇22 = 𝑇2 =
1

2𝜅
[

𝑓′𝑔′

2𝑓2 −
𝑓′′𝑔

𝑓
−

𝑙′′𝑔

𝑙
+

𝑙′2𝑔

4𝑙2 −
𝑓′𝑔𝑙′

2𝑓𝑙
],             (12) 

     𝑇33 = 𝑇3 =
1

2𝜅
[

𝑙′

4𝑙
−

𝑙 𝑓′′

𝑓
−

𝑔′′𝑙

𝑔
+

𝑔′2𝑙

2𝑔2 −
𝑓′𝑔′

2𝑔𝑓𝑙
].               (13) 

Now, using equation (2), we have MC equations 
    𝑇0,1𝑋1 + 2𝑇0𝑋0

,0 = 0,                             (14) 
    𝑇0𝑋0

,1 + 𝑇1𝑋1
,0 = 0,                            (15) 

    𝑇0𝑋0
,2 + 𝑇2𝑋2

,0 = 0,                             (16) 
    𝑇0𝑋0

,3 + 𝑇3𝑋3
,0 = 0,                                (17) 

    𝑇1,1𝑋1 + 2𝑇1𝑋1
,1 = 0,                           (18) 

    𝑇1𝑋1
,2 + 𝑇2𝑋2

,1 = 0,                          (19) 
    𝑇1𝑋1

,3 + 𝑇3𝑋3
,1 = 0,                                                   (20) 

    𝑇2,1𝑋1 + 2𝑇2𝑋2
,2 = 0,                           (21) 

    𝑇2𝑋2
,3 + 𝑇3𝑋3

,2 = 0,                           (22) 
    𝑇3,1𝑋1 + 2𝑇3𝑋3

,3 = 0,                         (23) 
where comma denotes partial derivative and indices 0,1,2,3 
corresponds to the variables 𝑡, 𝜚, 𝑧, 𝜙 respectively and 𝑇𝑖𝑖 =
𝑇𝑖  (𝑖 = 0,1,2,3). 
 
2.1 Degenerate Matter Symmetries  
 
In this section due to degeneracy of energy momentum 
tensor i.e. 𝑑𝑒𝑡(𝑇𝑎𝑏) = 0 we have the following different 
possibilities 
a) for any 𝑎, 𝑇𝑎 = 0, 
b) when only one 𝑇𝑎 ≠ 0, 
c) when two 𝑇𝑎 ≠ 0, 
d) when three 𝑇𝑎 ≠ 0. 
 
Case (a): 
This is trivial case. The MC equation (14)-(23) satisfied 
identically and thus every vector is matter collineations 
(symmetries) MC. 
 
Case (b): 
In this case, we have the following sub-cases, 
i) 𝑇0 ≠ 0, 𝑇1 = 𝑇2 = 𝑇3 = 0, 
ii) 𝑇1 ≠ 0, 𝑇0 = 𝑇2 = 𝑇3 = 0, 
iii) 𝑇2 ≠ 0, 𝑇0 = 𝑇1 = 𝑇3 = 0, 
iv) 𝑇3 ≠ 0, 𝑇0 = 𝑇1 = 𝑇2 = 0. 
For sub-case b-(i), using equations (14)-(23), we have the 
following matter symmetries (collineations) i.e MC 
equations 
    𝑇0,1𝑋1 + 2𝑇0𝑋0

,0 = 0,                            (24) 
    𝑇0𝑋0

,𝑎 = 0, (𝑎 = 1,2,3)                                                  (25) 
which has solution as 𝑋0 = 𝑐1, 𝑋1 = 0. 
For sub-case b-(ii), MC equations (14)-(23) becomes, 
    𝑇1𝑋1

,𝑏 = 0, (𝑏 = 0,2,3)  
    𝑇1,1𝑋1 + 2𝑇1𝑋1

,1 = 0.                         (26) 
Solving above equation, we get, 
 𝑋1 =

𝑐1

√𝑇1
,  𝑋𝑏 = 𝑋𝑏(𝑡, 𝜚, 𝑧, 𝜙) (𝑏 = 0,2,3). 

Now, constraint equations for sub-case b-(iii) using 
equations (14)-(23) are 
     𝑇2𝑋2

,𝑎 = 0, (𝑎 = 0,1,3) 
     𝑇2,1𝑋1 + 2𝑇2𝑋2

,2 = 0.                               (27) 
Thus required solutions are 
 𝑋1 = −

2 𝑇2

𝑇2,1
𝐹′(𝑧) and  𝑋2 = 𝐹(𝑧), 

where 𝐹(𝑧) is an arbitrary function of 𝑧. 
For sub-case b-(iv), we get similar type of solutions as in 
case b-(i) and these are 
 𝑋1 = 0, 𝑋3 = 𝑐1, 𝑋𝑎 = 𝑋𝑎(𝑡, 𝜚, 𝑧, 𝜙 ) (𝑎 = 0,2). 
 
Case (c): 
In this case, we have following possibilities 
i) 𝑇0 ≠ 0, 𝑇1 ≠ 0, 𝑇2 = 0, 𝑇3 = 0, 
ii) 𝑇0 ≠ 0, 𝑇1 = 0, 𝑇2 ≠ 0, 𝑇3 = 0, 
iii) 𝑇0 ≠ 0, 𝑇1 = 0, 𝑇2 = 0, 𝑇3 ≠ 0, 
iv) 𝑇0 = 0, 𝑇1 ≠ 0, 𝑇2 = 0, 𝑇3 ≠ 0, 
v) 𝑇0 = 0, 𝑇1 = 0, 𝑇2 ≠ 0, 𝑇3 ≠ 0, 
vi) 𝑇0 = 0, 𝑇1 ≠ 0, 𝑇2 ≠ 0, 𝑇3 = 0. 
 
For sub-case c-(i), using equations (14)-(23), we have the 
following constraint equations 
     𝑇0,1𝑋1 + 2𝑇0𝑋0

,0 = 0,                                (28) 
     𝑇0𝑋0

,1 + 𝑇1𝑋1
,0 = 0,                                                   (29) 

     𝑇0𝑋0
,𝑎 = 0, (𝑎 = 2,3)                                        (30)  

     𝑇1,1𝑋1 + 2 𝑇1𝑋1
,1 = 0,                                                 (31) 

     𝑇1𝑋1
,𝑏 = 0, (𝑏 = 2,3).                                                 (32) 

Equations (30) and (32) implies 
 𝑋0 = 𝐹(𝑡, 𝜚), 𝑋1 = 𝐺(𝑡, 𝜚).        (33) 
Equation (31), 𝑋1 =

𝑐1

√𝑇1
 . 

Using equation (28), (29) and (33), we have, 
 𝑋0 =

𝑇0,1

𝑇0√𝑇1
 𝑡 𝑐2 + 𝑐3, 

where 𝑐1, 𝑐2, 𝑐3 are constants of integration. 
For sub-cases c-(ii), matter collineation equations (14)-(23) 
becomes 
     𝑇0,1𝑋1 + 2𝑇0𝑋0

,0 = 0 ,                          (34) 
     𝑇0𝑋0

,2 + 𝑇2𝑋2
,0 = 0,                          (35) 

     𝑇2,1𝑋1 + 2𝑇2𝑋2
,2 = 0,                       (36) 

     𝑇𝑎𝑋𝑎
,𝑏 = 0, (𝑎 = 0,2 and 𝑏 = 1,3).       (37) 

 On solving above equations, we arrive at solutions as  
 𝑋0 = 𝑐1, 𝑋1 = 𝑋1(𝑡, 𝜚, 𝑧, 𝜙), 𝑋2 = 𝑐2, 𝑋3 = 𝑋3(𝑡, 𝜚, 𝑧, 𝜙). 
Now, MC equations for sub-cases c-(iii) are given by 
      𝑇0,1𝑋1 + 2𝑇0𝑋0

,0 = 0,        (38) 
      𝑇0𝑋0

,3 + 𝑇3𝑋3
,0 = 0,         (39) 

      𝑇3,1𝑋1 + 2𝑇3𝑋3
,3 = 0,        (40) 

      𝑇𝑎𝑋𝑎
,𝑏 = 0 (𝑎 = 0,3 and 𝑏 = 1,2).      (41) 

Using equations (38)-(41), we have solutions as 
 𝑋0 = 𝑐1, 𝑋1 = −

2 𝑇3

𝑇3,1
𝐺 ′(𝜙), 𝑋2 = 𝑋2(𝑡, 𝜚, 𝑧, 𝜙), 

 𝑋3 = 𝐺(𝜙), 
where 𝐺(𝜙) is an arbitrary function. 
For sub-case c-(iv), using equations (14)-(23), constraint 
equations are 
     𝑇1,1𝑋1 + 2𝑇1𝑋1

,1 = 0                                 (42) 
     𝑇1𝑋1

,3 + 𝑇3𝑋3
,1 = 0,                                  (43) 

     𝑇3,1𝑋1 + 2𝑇3𝑋3
,3 = 0,                                 (44) 

     𝑇𝑎𝑋𝑎
,𝑏 = 0, (𝑎 = 1,3 and 𝑏 = 0,2).                           (45) 

Equation (42) and (45) gives, 𝑋1 = 𝐹(𝜚, 𝜙), 𝑋3 = 𝐺(𝜚, 𝜙) 
and 
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𝑋1 =
𝑐1

√𝑇1
. (46) 

Now, using (45) and (46), we get 
𝑋3 =

𝑇3,1

2𝑇3√𝑇1
 𝜙 𝑐2 + 𝑐3, 𝑋0 = 𝑉0(𝑡, 𝜚, 𝑧, 𝜙) and 

 𝑋2 = 𝑋2(𝑡, 𝜚, 𝑧, 𝜙). 
Now, for sub-case c-(v), using equations (14)-(23), we have 
     𝑇𝑎𝑋𝑎

,𝑏 = 0 (𝑎 = 2,3 and 𝑏 = 0,1),   (47) 
     𝑇2,1𝑋1 + 2𝑇2𝑋2

,2 = 0,     (48) 
     𝑇2𝑋2

,3 + 𝑇3𝑋3
,2 = 0,     (49) 

     𝑇3,1𝑋1 + 2𝑇3𝑋3
,3 = 0.     (50) 

Therefore we have solutions as 
𝑋1 = 𝑋1(𝑡, 𝜚, 𝑧, 𝜙), 𝑋2 = 𝑐1, 𝑋3 = 𝑐2 with constraint 
condition  𝑇2 = 𝑐𝑜𝑛𝑠𝑡. ≠ 0, 𝑇3 = 𝑐𝑜𝑛𝑠𝑡. ≠ 0. 
Now, for sub-case c-(vi), we have the following solutions as  
 𝑋1 =

𝑐1

√𝑇1
,  𝑋2 = −

 𝑇2,1

𝑇2√𝑇1
 𝑧 𝑐1 + 𝑐2,  

𝑋0 = 𝑋0(𝑡, 𝜚, 𝑧, 𝜙), 𝑋3 = 𝑋3(𝑡, 𝜚, 𝑧, 𝜙). 
Consider, following sub-cases for case (d) 

i) 𝑇0 ≠ 0, 𝑇1 ≠ 0, 𝑇2 ≠ 0, 𝑇3 = 0, 
ii) 𝑇0 ≠ 0, 𝑇1 ≠ 0, 𝑇2 = 0, 𝑇3 ≠ 0, 
iii) 𝑇0 ≠ 0, 𝑇1 = 0, 𝑇2 ≠ 0, 𝑇3 ≠ 0, 
iv) 𝑇0 = 0, 𝑇1 ≠ 0, 𝑇2 ≠ 0, 𝑇3 ≠ 0. 

For sub-case d-(i), using equations (14)-(23), we have 
following MC equations 
    𝑇0,1𝑋1 + 2𝑇0𝑋0

,0 = 0,                        (51) 
    𝑇0𝑋0

,1 + 𝑇1𝑋1
,0 = 0,                          (52) 

    𝑇0𝑋0
,2 + 𝑇2𝑋2

,0 = 0,                            (53) 
    𝑇1,1𝑋1 + 2𝑇1𝑋1

,1 = 0,                        (54) 
    𝑇1𝑋1

,2 + 𝑇2𝑋2
,1 = 0,                         (55) 

    𝑇2,1𝑋1 + 2𝑇2𝑋2
,2 = 0,                        (56) 

   𝑇𝑎𝑋𝑎
,3 = 0, (𝑎 = 0,1,2).                       (57)  

We arrive at the solution, 𝑋2 = 𝑐1. 
Equation (54) implies, 𝑋1 =

𝐺(𝑡)

√𝑇1
 where 𝐺(𝑡) is an arbitary 

function. (58) 
Now, using (52) and (58) 

     𝑋0 = −𝐺̇(𝑡) ∫
√𝑇1

𝑇0
 𝑑𝜚 + 𝑐2.                       (59) 

Now, using (51) and (58) yields 
     𝑇0,1

2𝑇0𝐹(𝜚)√𝑇1
=

𝐺̈(𝑡)

𝐺(𝑡)
= 𝛼2 (const.),                                (60)  

where 𝐹(𝜚) = ∫
√𝑇1

𝑇0
 𝑑𝜚. 

When 𝛼2 = 0, 𝐺(𝑡) = 𝑐3𝑡 + 𝑐4. 
When 𝛼2 > 0, 𝐺(𝑡) = 𝑐3𝑒𝛼𝑡 + 𝑐4𝑒−𝛼𝑡. 
When 𝛼2 < 0, 𝐺(𝑡) = 𝑐3 cos(𝛼𝑡) + 𝑐4 sin(𝛼𝑡). 
Apply same procedure as in case d-(i), we have following 
solutions for sub-case d-(ii), 𝑋3 = 𝑐1, 𝑋0 =

−𝐺̇(𝑡) ∫
√𝑇1

𝑇0
 𝑑𝜚 + 𝑐2 and 𝑋1 =

𝐺(𝑡)

√𝑇1
. 

where 𝐺(𝑡) = 𝑐3𝑡 + 𝑐4 for 𝛼2 = 0, 
 𝐺(𝑡) = 𝑐3𝑒𝛼𝑡 + 𝑐4𝑒−𝛼𝑡 for 𝛼2 > 0, 
 𝐺(𝑡) = 𝑐3 cos(𝛼𝑡) + 𝑐4 sin(𝛼𝑡) for  𝛼2 < 0. 
Now, using equations (14)-(23), MC equations for sub-case 
d-(iii), 
     𝑇0,1𝑋1 + 2𝑇0𝑋0

,0 = 0,                                    (61) 
     𝑇0𝑋0

,2 + 𝑇2𝑋2
,0 = 0,                              (62) 

     𝑇0𝑋0
,3 + 𝑇3𝑋3

,0 = 0,                             (63) 
     𝑇2,1𝑋1 + 2 𝑇2𝑋2

,2 = 0,                            (64) 
     𝑇3,1𝑋1 + 2 𝑇3𝑋3

,3 = 0,                           (65) 
     𝑇2𝑋2

,3 + 𝑇3𝑋3
,2 = 0,                            (66) 

     𝑇𝑎𝑋𝑎
,1 = 0 (𝑎 = 0,2,3)                         (67) 

Therefore, 𝑋0 = 𝑐0, 𝑋2 = 𝐻(𝑧, 𝜙), 𝑋3 = 𝐺(𝑧, 𝜙). 
Now, using equations (64), (65) and (66)  
     − 𝑇2,1

𝑇3,1𝑇3
𝑋3

,33 = 𝑋3
,22.                                    (68) 

Set 𝑋3 = 𝑋(𝑧)𝑌(𝜙) then equation (68) gives 
     − 𝑇2,1

𝑇3,1𝑇3

𝑌,33

𝑌
=

𝑋,22

𝑋
 = 𝛼2 (const.)                              (69) 

Therefore, for 𝛼2 = 0 
𝑋1 = −

2𝑇3

𝑇3,1
[𝑐1𝑧 + 𝑐3], 

𝑋2 = −
𝑇3

𝑇2
 𝜙 [

𝑐1 𝜙

2
+ 𝑐2] + 𝑐5,  

𝑋3 = 𝑐1𝑧 𝜙 + 𝑐2𝑧 + 𝑐3𝜙 + 𝑐4. 
 
for 𝛼2 ≠ 0 
𝑋1 = −

2𝑇3

𝑇3,1
𝜁 ∙ 𝛼{cos(𝜁. 𝛼) 𝜙 [𝑐2𝑒𝛼𝑧 + 𝑐4𝑒−𝛼𝑧] −

         sin(𝜁. 𝛼)𝜙 [𝑐1𝑒𝛼𝑧 + 𝑐3𝑒−𝛼𝑧]}, 
 
𝑋2 =  

𝑇3

𝑇2

 𝛼

𝜁
{sin(𝜁 𝛼) 𝜙  [𝑐1𝑒𝛼𝑧 − 𝑐3𝑒−𝛼𝑧] −

cos(𝜁 𝛼)𝜙  [𝑐2𝑒𝛼𝑧 − 𝑐4𝑒−𝛼𝑧]} + 𝑐5, 

𝑋3 = cos(𝜁 𝛼) 𝜙 [𝑐1𝑒𝛼𝑧 + 𝑐3𝑒−𝛼𝑧] + sin(𝜁 𝛼)𝜙 [𝑐2𝑒𝛼𝑧 +
𝑐4𝑒−𝛼𝑧] + 𝑐6. 
 
Therefore matter symmetries for 𝛼2 = 0 are given by 𝑋 =

𝑋𝑖 𝜕

𝜕𝑥𝑖  , 𝑖 = 0,1,2,3 i.e. 

𝑋(1) =
𝜕

𝜕𝑡
, 𝑋(2) =

𝜕

𝜕𝑧
 , 𝑋(3) =

𝜕

𝜕𝜙
 ,  

𝑋(4) = −
2𝑇3

𝑇3,1
𝑧

𝜕

𝜕𝜚
+

𝑇3𝜙2

𝑇2

𝜕

𝜕𝑧
+ 𝑧𝜙

𝜕

𝜕𝜙
 , 

𝑋(5) =
𝑇3𝜙

𝑇2

𝜕

𝜕𝑧
+ 𝑧

𝜕

𝜕𝜙
 , 𝑋(6) = −

2𝑇3

𝑇3,1

𝜕

𝜕𝜚
+ 𝜙

𝜕

𝜕𝜙
 . 

Then matter symmetries for 𝛼2 ≠ 0 are  
𝑋(1) =

𝜕

𝜕𝑡
, 𝑋(2) =

𝜕

𝜕𝑧
 , 𝑋(3) =

𝜕

𝜕𝜙
 ,  

 

𝑋(4) = 𝜙 𝑒𝛼𝑧 [𝑐𝑜𝑠(𝜁𝛼)
𝜕

𝜕𝜙
+

𝑇3

𝑇2

𝛼

𝜁
 𝑠𝑖𝑛(𝜁𝛼)

𝜕

𝜕𝑧
+

2𝑇3

𝑇3,1
𝜁𝛼 𝑠𝑖𝑛(𝜁𝛼)

𝜕

𝜕𝜚
] , 

 

𝑋(5) = 𝜙 𝑒𝛼𝑧 [𝑠𝑖𝑛(𝜁𝛼)
𝜕

𝜕𝜙
+

𝑇3

𝑇2

𝛼

𝜁
 𝑐𝑜𝑠(𝜁𝛼)

𝜕

𝜕𝑧
−

2𝑇3

𝑇3,1
𝜁𝛼 𝑐𝑜𝑠(𝜁𝛼)

𝜕

𝜕𝜚
] ,  

 

𝑋(6) = 𝜙 𝑒−𝛼𝑧 [𝑐𝑜𝑠(𝜁𝛼)
𝜕

𝜕𝜙
−

𝑇3

𝑇2

𝛼

𝜁
 𝑠𝑖𝑛(𝜁𝛼)

𝜕

𝜕𝑧
+

2𝑇3

𝑇3,1
𝜁𝛼 𝑠𝑖𝑛(𝜁𝛼)

𝜕

𝜕𝜚
] , 

 

 𝑋(7) = 𝜙 𝑒−𝛼𝑧 [𝑠𝑖𝑛(𝜁𝛼)
𝜕

𝜕𝜙
+

𝑇3

𝑇2

𝛼

𝜁
 𝑐𝑜𝑠(𝜁𝛼)

𝜕

𝜕𝑧
−

2𝑇3

𝑇3,1
𝜁𝛼 𝑠𝑖𝑛(𝜁𝛼)

𝜕

𝜕𝜚
], 

 

where √
𝑇3,1

𝑇2,1
𝑇3 = 𝜁. 

For sub-case d-(iv), we have solutions as 
 𝑋0 = 0, 𝑋2 = 𝑐1, 𝑋3 = 𝑐2, 𝑋0 = 𝑋0(𝑡, 𝜚, 𝑧, 𝜙) 
 
2.2 Non-Degenerate Matter Symmetries 
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In this case, det(𝑇𝑎𝑏) ≠ 0 which is possible when we take 
𝑇0 = 𝑐1̃ ≠ 0, 𝑇1 = 𝑐2̃ ≠ 0, 𝑇2 = 𝑐3̃ ≠ 0, 𝑇3 = 𝑐4̃ ≠ 0 where 
𝑐1̃, 𝑐2̃, 𝑐3̃, 𝑐4̃ are constants. 
 
Therefore equations (14)-(23) become 
                             𝑋𝑎

,𝑎 = 0 (𝑎 = 0,1,2,3),                     (70) 
                            𝑐1̃𝑋0

,1 + 𝑐2̃𝑋1
,0 = 0,                           (71) 

                            𝑐1̃𝑋0
,2 + 𝑐3̃𝑋2

,0 = 0,                           (72) 
                            𝑐1̃𝑋0

,3 + 𝑐4̃𝑋3
,0 = 0,                           (73)  

                            𝑐2̃𝑋1
,2 + 𝑐3̃𝑋2

,1 = 0,                           (74) 
                            𝑐2̃𝑋1

,3 + 𝑐4̃𝑋3
,1 = 0,                           (75) 

                            𝑐3̃𝑋2
,3 + 𝑐4̃𝑋3

,2 = 0.                           (76) 
Equation (70) implies 𝑋0 = 𝐹(𝜚, 𝑧, 𝜙),  
𝑋1 = 𝐺(𝑡, 𝑧, 𝜙), 𝑋2 = 𝐻(𝑡, 𝜚, 𝜙), 𝑋3 = 𝐼(𝑡, 𝜚, 𝑧).  
 
Now, using equations (74), (75) and (76), we get 
𝑋3

,21 = 0 gives 𝑋3 = 𝑐1𝜚 + 𝑐2. Substitute 𝑋3 in equation 
(76) we get 
 𝑋2 = 𝑐3𝑡 + 𝑐4. 
 
Using equations (71)-(73) and (75) give 
 𝑋1 = 𝑐5𝜙 and 𝑋0 = 𝑐6𝑡𝑧 + 𝑐7  
where 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5 =

−𝑐4̃

𝑐2̃
𝑐1, 𝑐6 =

−𝑐3̃

𝑐1̃
 and 𝑐7 are non-

zero constants. 
 
Then matter symmetries are given by 
𝑋(1) =

𝜕

𝜕𝑡
, 𝑋(2) =

𝜕

𝜕𝑧
 , 𝑋(3) =

𝜕

𝜕𝜙
 , 𝑋(4) = 𝜚

𝜕

𝜕𝜙
 , 𝑋(5) = 𝑡

𝜕

𝜕𝑧
 , 

𝑋(6) = 𝜙
𝜕

𝜕𝜚
 , 𝑋(7) = 𝑧

𝜕

𝜕𝑡
. 

 
3. Discussion 
 
In the classification of Linet-Tian space-time according to 
energy-momentum tensor, we find ten matter symmetries 
equations. We have solved these equations for degenerate 
case (section 2.1) where det(𝑇𝑎𝑏) = 0 as well as for non-
degenerate case (section 2.2) when det(𝑇𝑎𝑏) = 𝑇0𝑇1𝑇2𝑇3 ≠
0. From these equations we obtain different constraint 
equations on energy-momentum tensor. If we solve these 
constraint equations we can have new class of exact 
solutions of Einstein’s field equations. It is observed from 
section (2.2) that when energy-momentum tensor is 
degenerate, then we obtain the four cases (a), (b), (c) and (d) 
where the matter symmetries equations admit infinite 
dimensional for all cases. It is very interesting to note that 
we have found a case (2.1.d.iii) where energy-momentum 
tensor is degenerate but the group of matter symmetries is 
finite dimensional i.e. there are six or seven independent 
MC’s.  
 
Furthermore, it is observed from section (2.2) that when 
energy-momentum tensor is non-degenerate we found MC’s 
of seven dimensional. These include three usual Killing 
vectors for Linet-Tian space-time and the remaining are non-
trivial MC’s. All these results have been summarised in the 
table at the end of this conclusion. (see Appendix A) 
 
4. Conclusion 
 
In this paper, we have studied the symmetries of the energy-
momentum tensor (𝑇𝑎𝑏) for the Linet-Tian metric. We have 

classified Linet-Tian metric according to their matter 
symmetry by solving matter symmetries (collineation) 
equations. These matter symmetry equations are solved by 
taking one, two, three and four non-zero components of 
energy-momentum tensor (𝑇𝑎𝑏) for the Linet-Tian space-
time which on solving gives the degenerate as well as non-
degenerate cases. In degenerate case, we have obtained 
infinite number of MC’s in all cases except the case-2.1-d-
(iii) which is degenerate but finite dimensional i.e. six or 
seven and in non-degenerate case we have obtained seven 
finite dimensional MC’s. 
 
5. Appendix A 
 
The usual linearly independent Killing vectors for Linet-
Tian metric are given by 
 

𝑋(1) =
𝜕

𝜕𝑡
, 

𝑋(2) =
𝜕

𝜕𝑧
, 

𝑋(3) =
𝜕

𝜕𝜙
. 

For Degenerate Case 
Case Constraint 

 MC’s 

2.1.a 𝑇0 = 𝑇1 = 𝑇2 = 𝑇3 = 0 
 Every vector 

2.1.b.i 𝑇0 ≠ 0, 𝑇1 = 𝑇2 = 𝑇3 = 0 
 

Infinite 
dimensional 

2.1.b.ii 𝑇1 ≠ 0, 𝑇0 = 𝑇2 = 𝑇3 = 0 
 

Infinite 
dimensional 

2.1.b.iii 𝑇2 ≠ 0, 𝑇0 = 𝑇1 = 𝑇3 = 0 
 

Infinite 
dimensional 

2.1.b.iv 
𝑇3 ≠ 0, 𝑇0 = 𝑇1 = 𝑇2 = 0 

 
Infinite 

dimensional 

2.1.c.i 𝑇0 ≠ 0, 𝑇1 ≠ 0, 𝑇2 = 0, 𝑇3 = 0 
 

Infinite 
dimensional 

2.1.c.ii 𝑇0 ≠ 0, 𝑇1 = 0, 𝑇2 ≠ 0, 𝑇3 = 0 
 

Infinite 
dimensional 

2.1.c.iii 𝑇0 ≠ 0, 𝑇1 = 0, 𝑇2 = 0, 𝑇3 ≠ 0 
 

Infinite 
dimensional 

2.1.c.iv 𝑇0 = 0, 𝑇1 ≠ 0, 𝑇2 = 0, 𝑇3 ≠ 0 
 

Infinite 
dimensional 

2.1.c.v 𝑇0 = 0, 𝑇1 = 0, 𝑇2 = 𝑐𝑜𝑛𝑠𝑡. ≠ 0,  
 𝑇3 = 𝑐𝑜𝑛𝑠𝑡. ≠ 0 

Infinite 
dimensional 

2.1.c.vi 𝑇0 = 0, 𝑇1 ≠ 0, 𝑇2 ≠ 0, 𝑇3 = 0 
 

Infinite 
dimensional 

 
2.1.d.i 𝑇0 ≠ 0, 𝑇1 ≠ 0, 𝑇2 ≠ 0, 𝑇3 = 0 Infinite 

dimensional 

2.1.d.ii 𝑇0 ≠ 0, 𝑇1 ≠ 0, 𝑇2 = 0, 𝑇3 ≠ 0 
 

Infinite 
dimensional 

2.1.d.iii 

𝑇0 ≠ 0, 𝑇1 = 0, 𝑇2 ≠ 0, 𝑇3 ≠ 0, 
𝛼2 = 0 6 

𝑇0 ≠ 0, 𝑇1 = 0, 𝑇2 ≠ 0, 𝑇3 ≠ 0, 
𝛼2 ≠ 0 

7 

2.1.d.iv 
 𝑇0 = 0, 𝑇1 ≠ 0, 𝑇2 ≠ 0, 𝑇3 ≠ 0 

 
Infinite 

dimensional 
 

For Non-degenerate Case 
Case Constraint MC’s 

2.2 𝑇0 = 𝑐1̃ ≠ 0, 𝑇1 = 𝑐2̃ ≠ 0, 
𝑇2 = 𝑐3̃ ≠ 0, 𝑇3 = 𝑐4̃ ≠ 0 7 
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