
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 11, November 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

A Competitive Clustering on Bigdata

N. Narasimha Swamy
1
, Anita Kumari Singh

2

 1M.Tech, Department of Computer Science and Systems Engineering, Andhra University, Visakhapatnam, India

2Phd Scholar, Department of Computer Science and Systems Engineering, Andhra University, Visakhapatnam, India

Abstract: The vast increase in the volume of data has created a need for new applications and algorithms to quickly analyse the large

scale of data. Many of the cluster analysis techniques like K-Means are used to compute the data in distributed systems, its accuracy

depends on the initial seeding of centroids. The improvisation of K-Means algorithm shows good initial seeding but it suffers with the

serial nature i.e., it takes long time on large data sets. In this paper we propose a new algorithm with Map Reduce implementation to

address the above problems. Our algorithm provides parallel processing of data by dividing it into number of subsets using Hadoop with

MapReducing methods. Our work provides good initial centers in a less time and also produces fast and accurate cluster analysis on

large scale data.

Keywords: K-Means, K-Means++, MapReduce, Mahout, HDFS

1. Introduction

Now- a- days data is growing rapidly with an exponential
rate. We need to develop new tools to analyse this abundant
amount of data quickly. Even though with the developing
computer hardware and high speed internet facilities the
problem of handling large scale data is prevailing. With
reference to these problems, a few efficient methods like
divide and conquer, sampling, distributed computing,
incremental learning[2] etc., have been implemented. Thus
to improve the computation time of data analytics we are
using the dimensionality reduction methods. To retrive
knowledge from large amount of data we need new
analyzing techniques like cluster analysis.

As the data is very large, applying the traditional clustering
techniques may increase the cost abundently. So we need
new clustering techniques to improvise the performance of
the data extraction. The Algorithms like K-Means are used
to cluster large data in a parallel manner but it faces major
problem while initializing the initial cluster centers. An
effective center initialisation provides good scalable
clusters, but to provide the initial centers we must have a
prior idea about the data. It is much more difficult to
provide the effective centers when the data consists the big
data properties like high volume of data, high dimensionality
and distributive data storage. Arthur and Vassilvitskii, 2007
introduces K-Means++[3] algorithm to improvise the initial
seeding by taking each center at a far distance from each
other. K-Means++ also faces two major problems, firstly it is
a serial algorithm so it takes very high amount of time to
process the data and it is a stocahastic algorithm i.e., it
produces different results on the same initial conditions. To
improvise the effective initial seeding and execution time of
the data we are introducing the new algorithm called Ball K-
Means which is also called as competitive K-Means[1] with
a mapreduce implementation.

2. Related Work

Clustering is a process of grouping similar objects into a
cluster. It is used in many applications like searching,
effecient browsing, document classification,
recommendation systems, etc. Clustering is mainly

categorized into 5 types they are partition based, hierarchical
based, model based, grid based and density based clustering.
Among those partitioning based clustering is simple and
straight forward to implement on the large data. The K-
Means[6] algorithm is one of the partition based clustering
method it randomly selects the k initial centers where k is
the parameter initially taken from the user and further assign
the data points to the cluster centers which are near to the
center by calculating the distance with each center. The
mean of the clusters are calculated and are considered as
new centers. The clustering is performed until the effective
clusters are obtained. The distance functions used in the
clustering are manhattan distance, Euclidean distance,
minkowski distance.

Map reducing is a programming model in Hadoop
framework. It is used to develop applications for processing
the vast amount of data in parallel way and produces very
fast results. MapReduce can take the input from the Hadoop
Distributed File System (HDFS), process the data and
produces the result onto HDFS. At first the data is splitted
according to the block size and is stored in multiple systems
due to the nature of replication in Hadoop[5]. The data
which is splitted is taken as input for the map function and is
processed according to the logic present in the map function
and produces the result. The output of the map method is
taken as input for the reduce method and is further processed
according to the logic present in the reduce method and
finally produces the desired result. In between the map and
reduce methods the hadoop framework will execute the
predefined methods for sorting and shuffling the data. Map
Reduce[4] can execute the data parallelly in many systems
and combines the results. The process itself shows the high
reduction of execution cost in the project. Map Reducing is
the good solution for analyzing large amounts of data.

Many of the data mining algorithms are implemented in
mapreduce on hadoop. We will produce a tool with inbuilt
programs to implement on the large scale data. Mahout is a
open source project which is built on top of the hadoop.
Mahout is started as a sub project of Lucene. It implements
machine learning algorithms including recommendation
systems, classification and clustering. Many companies uses
Mahout for their project areas due to its scalability. The top

Paper ID: NOV151162 812

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 11, November 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

features of mahout are - The algorithms produces effictive
results in the distributed environment and it fits good with
the cloud environment, It provides in-built code and is easy
to use algorithms on very large scale data. It has inbuilt
distributed fitness function capability. It produces fast results
in analysing large datasets. It provides many mapreduce
algorithms[7][8] for clustering like k-means, fuzzy k-means,
canopy, mean shift and dirichlet algorithms. Which scales
well with distributed large amount of data.

The Mahout data flow is shown in fig 1. It takes the input
from the file and convert it into a sequence file because
mahout applies the algorithms only on the sequence files and
produces the results also in the form of sequence files. In
between it performs the map and reduce methods according
to the user code.

Figure 1: Data Flow Diagram

3. Methodology

The work flow of K-Means++ is shown in below algorithm2
it first selects the initial centroid and then selects the other
centroids one by one in a sequential way. Initially a set of
data points X and number of centroids k are given.

Algorithm 1:
1: IC ← a single data point uniformly sampled at random
from X
2: While || IC || <k do
3: For each data point dp ∈ X, compute D(dp, ic),

where D is the shortest distance from x to the closest ic ∈ IC
4: Sample dp ∈ X with probability
 D2(dp , ic) =Σ D 2 (dp , ic)
5: IC ← IC ∪ {dp}
6: End while
7: K-Means on X using the set of initial centroids IC

Initialise the single centroid by picking random sample from
the dataset X and calculate the distance from the remaining
points and find the data point with the highest probability
and add it to the initial centroid set. Repeat the steps 2 to 5

Paper ID: NOV151162 813

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 11, November 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

until k centers are occurred. Perform the K-Means algorithm
for the obtained centers at step7 and obtain the final clusters
for the dataset.

Performing K-Means++ algorithm on large scale data is time
consuming due to its serial nature. To solve this problem we
will partition the data into m subsets and perform the CK-
Means algorithm on each subset in parallel. The results of
each subset are again scored using a fitness function to get
the k intial centroids.

Algorithm 2:
1: Partition X into x 1 , x 2 , ..., x m
2: For each i ∈ {1, 2, ..., m} do
3: Run K-Means++ on x i to get k centroids IC i and clusters
clx i
4: S i = f (clx i)
5: C ← IC i , where i ← Best – fit(S i)
6: Run K-Means on X with C as initial centroids to obtain
cluster analysis output

In step 3 we perform the K-Means++ algorithm parallelly on
the subsets of data and get the k centers for each subset.
Among these centers again we obtain the k centers using the
fitness function. Perform the K-Means algorithm for the
obtained centers in step 6 and retrieve the effecient clusters.
Here steps 3-5 clearly shows the parallelization of the
computation and reduces the time of execution.

Dataset used in the experiment is the hypercube dataset
which is a generated by using synthetic data generator. The
dataset having 10k points with 10 dimensionality.

The equipment used for performing the cluster analysis is a
Hadoop cluster with 5 Nodes each of 8GB, 1334MHz DDR3
RAM; 1TB Hard Disk with inter core i5 processor;Ubuntu
14.04 and Hadoop version 2.7.0

We can apply the kmeans++ algorithm and CK-Means
algorithm on the dataset and the corresponding execution
time is noted in the table by varying the k, where k is the
number of centers.

Table1: execution time in milli seconds
Algorithm K=50 K=200

Kmeans++ 4281ms 4765ms

CK-Means 856ms 953ms

Hence from the above results it is clearly shown that our
algorithm produces the accurate clusters in very less time.

4. Conclusion

K-Means algorithm with parallel processing will produce the
fast clusters but it suffers with the initial cluster center
initialization. Although K-Means++ improves the initial
seeding yet it shows the serial nature. So in this paper we
parallelize the K-Means++ to improve the fast and effective
clusters over the large datasets. Our CK-Means will produce
the accurate clusters by taking the advantage of Map Reduce

and K-Means++ algorithms. We found that our CK-Means
algorithm scales well with large scale and with high
dimensional data. Observing our results we will clearly
prove that accurate clusters are formed very fast by using
our CK-Means algorithm.

References

[1] Esteves, R.M., Hacker, T. ; Chunming Rong, (2013)

Competitive K-Means, a New Accurate and Distributed
K-Means Algorithm for Large Datasets

[2] Chun-Wei Tsai, Chin-Feng Lai, Han Chieh Chao,(2015),
Big data analytics: a survey, journal of BigData

[3] Arthur, D. and Vassilvitskii, S. (2007) K-Means++: the
advantages of careful seeding’, SODA ‘07 Proceedings
of the Eighteenth Annual ACM-SIAM Symposium on
Discrete Algorithms

[4] Ekanayake, J., Pallickara, S. and Fox, G. (2008)
‘MapReduce for data intensive scientific analyses’, in
eScience ’08, IEEE Fourth International Conference on,
pp.277–284.

[5] Holmes, A. (2012) Hadoop in Practice, Manning
Publications Co., New York.

[6] Tapas Kanungo, David M. Mount, Nathan S, (2002), An
Efficient k-Means Clustering Algorithm: Analysis and
Implementation.

[7] Dean, J. and Ghemawat, S. (2008) ‘MapReduce:
simplified data processing on large clusters’, Commun.
ACM, Vol. 51, No. 1, pp.107–113,
doi:10.1145/1327452.1327492.

[8] Esteves, R.M.,Pais, R. ; Chunming Rong, (2011), K-
means Clustering in the Cloud - A Mahout Test a
conference of Advanced Information Networking and
Applications (WAINA)

Paper ID: NOV151162 814

