
International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 

Volume 4 Issue 11, November 2015 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Software Fault Prediction Using Data Reduction 
Techniques 

 

Jagruti R. Patil
1
, Swapnaja Suryawanshi

2
 

 

1Savitribai Phule Pune University, Indira College of Engineering and Management, Pune, Maharashtra, India 
 

2Professor, Savitribai Phule Pune University, Indira College of Engineering and Management, Pune, Maharashtra, India 
 

Abstract: The procedure of altering bug will be bug triage, which plans to effectively relegate an engineer to another bug. 

Programming organizations spend the greater part of their expense in managing these bugs. To decrease time and cost of bug triaging, 

we display a programmed way to deal with foresee a designer with significant experience to comprehend the new coming report. In 

proposed approach we are doing information decrease on bug information set which will lessen the size of the information and also 

build the nature of the information. We are utilizing example determination and highlight choice at the same time with verifiable bug 

information. We have included another module here which will depict the status of the bug like whether it doled out to any engineer or 

not and it is redressed or not. The objective of bug triaging is to allot possibly experienced designers to new-coming bug reports. To 

diminish time and cost of bug triaging, we introduce a programmed way to deal with anticipate an engineer with important experience to 

understand the new coming report. In this paper, we examine the utilization of five term determination techniques on the precision of 

bug task. Moreover, we re-adjust the heap between engineers taking into account their experience. We lead investigates four genuine 

datasets. The exploratory results demonstrate that by selecting a little number of separating terms, the F-score can be altogether made 

strides. 

 

Keywords: Bug, Bug triage, Data Reduction, Instance selection, Data Mining. 
 

1. Introduction 
 
Programming organizations spend more than 45 percent of 
expense in managing programming bugs. An unavoidable 
stride of settling bugs is bug triage, which expects to 
effectively allot a designer to another bug. To diminish the 
time cost in manual work, content arrangement procedures 
are connected to direct programmed bug triage. In this paper, 
we address the issue of information lessening for bug triage, 
i.e., how to decrease the scale and enhance the nature of bug 
information. We join occurrence choice with highlight 
determination to all the while diminish information scale on 
the bug measurement and the word measurement. To decide 
the request of applying occasion determination and highlight 
choice, we concentrate properties from recorded bug 
information sets and assemble a prescient model for another 
bug information set. We experimentally explore the 
execution of information decrease on bug reports of two 
substantial open source ventures, in particular Eclipse and 
Mozilla. The outcomes demonstrate that our information 
lessening can viably diminish the information scale and 
enhance the precision of bug triage. Our work gives a way to 
deal with utilizing methods on information handling to frame 
decreased and astounding bug information in programming 
improvement and support. A period expending venture of 
taking care of programming bugs is bug triage, which means 
to dole out a right designer to settle another bug. In 
conventional programming advancement, new bugs are 
physically triaged by a specialist engineer, i.e., a human 
triage. Because of the substantial number of day by day bugs 
and the absence of aptitude of the considerable number of 
bugs, manual bug triage is costly in time cost and low in 
precision. In manual bug triage in Eclipse, percent of bugs 
are relegated by oversight while the time expense between 
opening one bug and its first triaging is 19.3 days by and 
large. To maintain a strategic distance from the costly cost of 
manual bug triage, existing work has proposed a 

programmed bug triage approach, which applies content 
characterization methods to foresee engineers for bug 
reports. In this methodology, a bug report is mapped to a 
record and a related engineer is mapped to the mark of the 
archive. At that point, bug triage is changed over into an 
issue of content characterization and is consequently 
explained with full grown content grouping systems, e.g., 
Naive Bayes. Taking into account the consequences of 
content characterization, a human triage allots new bugs by 
joining his/her mastery. To enhance the exactness of content 
characterization methods for bug triage, some further 
procedures are explored, e.g., a hurling diagram approach 
and a collective sifting methodology. Nonetheless, vast scale 
and low-quality bug information in bug stores obstruct the 
procedures of programmed bug triage. .Since programming 
bug information are a sort of freestyle content information 
(created by engineers), it is important to produce very much 
handled bug information to encourage the application 
[1][3][5].  
 

1.2 Problem Specification 

 
There are two problems related to bug data that may affect 
the effective use of bug repositories in software development 
tasks, namely the large scale and the low quality. In a bug 
repository, a bug is maintained as a bug report, which 
records the textual description of reproducing the bug and 
updates according to the status of bug fixing. Reducing bug 
data set in order to have less scale of data and quality data. 
For that we have used feature selection and instance selection 
techniques of data mining as well as we have used historical 
data. 
 
1.3 Proposed Methodology 

 
In this paper, we address the issue of information 
diminishment for bug triage, i.e., how to lessen the bug 
information to spare the work expense of engineers and 

Paper ID: NOV151142 521



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 

Volume 4 Issue 11, November 2015 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

enhance the quality to encourage the procedure of bug triage. 
Information diminishment for bug triage expects to 
manufacture a little scale and top notch set of bug 
information by evacuating bug reports and words, which are 
excess or non-educational. In our work, we consolidate 
existing strategies of case determination and highlight choice 
to at the same time diminish the bug measurement and the 
word measurement. The diminished bug information contain 
less bug reports and less words than the first bug information 
and give comparable data over the first bug information. We 

assess the lessened bug information as per two criteria: the 
size of an information set and the exactness of bug triage. To 
stay away from the predisposition of a solitary calculation, 
we exactly inspect the consequences of four occasion 
determination calculations and four component choice 
calculation. 
 
2. Architecture 
 

 

 
Figure 1: Bug Report Reduction Technique  

 

2.1 Steps in Model Execution  

 

1. Project Analyser 
2. Bug Repository Maintenance 
3. Bug Report Analysis 
4. Task Scheduling & Notification 
 
1. Project Analyser  

Project Analyser enhances user to maintain all the 
information regarding project and The process of gathering 
requirements is usually more than simply asking the users 
what they need and writing their answers down. Depending 
on the complexity of the application, the process for 
gathering requirements has a clearly defined process of its 
own. This process consists of a  Software breakdown 
structure, module specification , their development strategy, 
modular dependencies, database, team details, manager, 
developer, tester, deployment testing team, services details, 
external reference used for project or module development, 
third party tools, Module Input Output Details, etc from 
company. group of repeatable processes that utilize certain 
techniques to capture, document, communicate, and manage 
requirements. Module is intended to gather all the 
information of software development, like 

This formal process, which will be developed in more detail, 
consists of four basic steps. 
1. Elicitation – I ask questions, We Communicate.  
2. Validation – I analyse, We follow-up questions  
3. Specification – I document, we follow-up questions  
4. Verification – We all agree. 
 

2. Bug Repository Maintenance : 

The Bug Repository dataset is a collection of models and 
metrics of software systems and their histories. The goal of 
such a dataset is to allow people to compare different bug 
prediction approaches and to evaluate whether a new 
technique is an improvement over existing ones. In 
particular, the dataset contains the data needed to:  
1. Run a prediction technique based on source code metrics 

and/or historical measures and/or process information 
(cvs logs data); 

2. Compute the performance of the prediction by comparing 
its results with an set, i.e., the number post release defects 
reported in bug tracking system.  

The dataset is designed to perform bug prediction at the class 
level. However package or subsystem information can be 
derived by aggregating class data, since per each class it is 
specified the package that contains it. 

Paper ID: NOV151142 522



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 

Volume 4 Issue 11, November 2015 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

3. Bug Report Analysis  
 
We present an approach for automatic triaging by 
recommending one experienced developer for each new bug 
report.  
A. Representation Framework: 
We have a collection of bug reports, B = {b1, …, b|B|}. Each 
bug report has a collection of term, T = {t1, … , t|T|}, and a 
class label (developer), c   
C = {c1, … , c|C|}. 
B. Term selection methods: 
 
Are used to reduce the high dimensionality of term space by 
selecting the most dis- criminating terms for the 
classification task. The methods give a weight for each term 
in which terms with higher weights are assumed to 
contribute more for the classification task than terms with 
lower weights. 
1. Log Odds Ratio (LOR): Log Odds Ratio measures the 

odds of the word occurring in the positive class 
normalized by the negative class. The idea is that the 
distribution of terms on the relevant documents is 
different from the distribution of terms on the non- 
relevant documents. 

2. Chi-Square (X2): In statistics, the X2 test is used to 
examine independence of two events. The events, X and 
Y, are assumed to be independent if P(XY)=P(X)P(Y). In 
term selection, the two events are the occurrence of the 
term and the occurrence of the class.  

3. Term Frequency Relevance Frequency (TFRF): The 
basic behind the TFRF method is that the more high 
frequency for a term in the positive category than in the 
negative category, the more contributions it makes in 
selecting the positive instances from the negative 
instances.  

4. Mutual Information (MI): Mutual information 
measures the mutual dependence of two random 
variables. MI computes X(t, c) as the mutual information 
(MI) of term t and class c. MI measures how much the 
presence and the absence of a term contributes to making 
the correct classification decision on c. 

5. Distinguishing Feature Selector (DFS): DFS is a new 
novel term selection method. It providesglobal 
discriminatory powers of the features over the entire text 
collection rather than being class specific. DFS considers 
the following requirements: 1) a term that occurs 
frequently in a single class and not in other classes is 
distinctive, 2) a term that rarely occurs in a single class 
and not in other classes is irrelevant, 3) a term that occurs 
frequently in all classes is irrelevant, and 4) a term that 
occurs in some of the classes is relatively distinctive. DFS 
assigns scores to the features between 0.5 (least 
discriminative) and 1.0 (most discriminative).  

 
4. Task Scheduling & Notification 
 
The development group with has run into this issue so many 
times that we decided to write our own solution to this 
problem and make solve, this module reaches up to 
developer as well as customer from Bug Report Analysis 
phase . It's called Revalue: a signal to arise—and it is a 
Service that freezes your job requests in overall process until 
it's time to thaw them out.  

5. Application 
 
Bug Triage System can be used for any used in any online 
software or web portals like E-commerce, CRM, CMS, ERP, 
etc.  
 
6. Conclusion 
 
Bug triage is a costly stride of programming upkeep in both 
work cost and time taken a toll. In this paper, we consolidate 
feature determination with example choice to lessen the size 
of bug information sets and in addition enhance the 
information quality. To deflect mine the request of applying 
case choice and highlight choice for another bug information 
set, we concentrate traits of every bug information set and 
prepare a prescient model taking into account authentic 
information sets. We experimentally explore the information 
reduction for bug triage in bug archives of two substantial 
open source ventures, in particular Eclipse and Mozilla. Our 
work enhances a way to deal with utilizing methods on 
information procedure to shape diminished and astounding 
bug information in programming advancement and support. 
 

References 
 

[1] Towards graphical models for text processing, Charu C. 
Aggarwal , Peixiang Zhao 

[2] Who Should Fix This Bug?, John Anvik, Lyndon Hiew 
and Gail C. Murphy 

[3] Automatic bug triage using text categorization Davor 
Cubranic Gail C. Murphy 

[4] Another move toward the minimum consistent subset: A 
tabu search approach to the condensed nearest neighbor 
rule, Vicente Cerverón Lleó 

[5] Efficient Bug Triaging Using Text Mining, Mamdouh 
Alenezi, Kenneth Magel, Shadi Banitaan 

[6] Advances in Instance Selection for Instance-Based 
Learning Algorithms - HENRY BRIGHTON,CHRIS 
MELLISH 

[7] Information Needs in Bug Reports: Improving 
Cooperation Between Developers and Users Silvia 
remraj,Jonathan Sillito,Thomas Zimmermann 

[8] The Transformation of Open Source Software  
[9] Formal Models for Expert Finding in Enterprise 

Corporate. 

Paper ID: NOV151142 523




