
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 11, November 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Trusted Framework for Secured Information
Storage over Cloud Environment

P. Pothuraju
1
, Dasari Rajesh

2

1Computer Science and Engineering, Rise Gandhi Group of Institutions, Ongole, India

Abstract: Cloud orchestration involves cloud resources scaling up and down, management, as well as manipulation to better respond
user’s requests and to facilitate operational objectives of the service providers. These promote the elastic nature of cloud platform but
force upon significant challenges to cloud service providers. Particularly, security issues such as inconsistency may arise while dynamic
changes such as virtual machine migration occur. In this paper, we intend to tackle this problem, specifically for intrusion detection/
prevention and VPN/IPsec as main security mechanisms. More precisely, we propose a systematic verification approach to check the
compliance of security configurations. To this end, we first elaborate on two properties, namely intrusion monitoring configuration
preservation and VPN/IPsec protection configuration preservation. Then, we derive a set of formulas that compare security
configurations before and after migration. This allows reasoning on whether the aforementioned security properties hold. To this end,
we encode these formulas as constraint satisfaction problems.

Keywords: Cloud security, security architecture, security and privacy.

1. Introduction

Recent developments in virtualization have made cloud
computing an increasingly important research and
operational area. Migration of Virtual Machines (VMs) has
opened new opportunities in computing. It can help in many
ways such as high-availability of services, consolidated
management, and workload balancing. While virtualization
and VM migration provide important benefits, their
combination may introduce new security challenges. In
order to ensure a secure cloud, firewalls should not be the
only line of defense. Moreover, access to and from the VMs
have to be tracked and monitored for eventual security
attacks. At the same time, the number of VMs deployed in a
data center may increase enormously. Therefore, cloud
providers have to offer intrusion monitoring solutions, which
should be adaptive and scalable for the elastic cloud
environment. In this regard, traditional hardware security
appliances are fundamental to secure cloud infrastructures.
However, the traffic that is between collocated VMs
normally remains at the virtual level and passes through
virtual switches, which makes the hardware appliance blind
to this type of traffic. To be effective in a virtualized
environment, security controls must live inside the virtual
and cloud systems. While traditional hardwarebased
solutions are not able to respond to virtual machine
activities, virtual security solutions can be adaptive, scalable,
and capable of addressing these challenges. Therefore, a
virtualized intrusion detection and prevention system is also
required to monitor traffic on the virtual level. To this end,
various approaches are being proposed by research
initiatives [1] and standard bodies [2] to inspect the VMto-
VM traffic.

In addition to Intrusion Detection and Prevention Systems
(IDPS), tenants can ask for the deployment of a secure
Virtual Private Network (VPN) between their corporation
networks and their networked VMs running in the cloud.
This is to enable protecting information in transit over
insecure networks or leveraging the cloud services as an

extension of their corporate data centers. The necessity of
implementing a VPN connection between home network or
the corporation data center, and the VMs deployed in the
public cloud has been realized by virtualization leaders and
cloud providers. For instance, IPsec VPN connection is
supported in Amazon [3]. In addition, VMware propose
vShield Edge VPNs [4] for cloud providers. Elasticity of
cloud computing implies addition, mobility, or even removal
of VMs and consequently, requires reconfiguration of
network nodes, including security appliances. Some research
initiatives have proposed solutions to address the
implementation of dynamic reconfiguration in the cloud [5],
[6]. However, dynamic reconfiguration is error-prone [7],
and if not properly performed may cause security
configurations inconsistencies, thus exposing the VMs as
well as the whole infrastructure to serious security threats.
Therefore, a security policy verification framework at the
cloud management layer is essential to enable cloud
providers certifying that the right security policy is enforced
at the destination location. In this paper, we propose such a
framework within a scope of intrusion detection and IPsec. It
is based on the comparison of a given known secure
configuration, existing before migration, with a newly
generated configuration, that should be deployed at the
destination. The main goals are to detect errors in the
configuration and to provide a useful feedback to correct the
problem before the actual migration takes place. The
verification spans both source and destination data centers in
the case of a migration across data centers. The main
contributions of this paper are threefold:

 Define the concepts of intrusion monitoring and IPsec

protection preservations in cloud data centers.
 Derive a set of formulas relating: (1) the traffic

monitored by the IDPS devices before and after
migration (2) the traffic protected via IPsec endpoints
before and after migration. For the sake of completeness,
the verification is performed over the traffic in source
and destination data centers for all hosted VMs.

Paper ID: NOV151117 1695

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 11, November 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 Elaborate a verification approach based on Constraint
Satisfaction Problem (CSP), for establishing security
preservation.

2. Related Work

In this section, we present a literature review with respect to
intrusion monitoring, and IPsec VPN in cloud computing,
with focus on the analysis of security policy consistency,
and the verification of security policy compliance.

2.1 Intrusion Monitoring

With respect to IDS, a number of initiatives focus mainly on
proposing a solution to handle inspection specifically
designed to the cloud. For instance, [1] proposes virtual
machines introspection (VMI). This approach relies on the
hypervisor or the virtual machine monitor to inspect the VM
from the outside of the host. Modi et al. [8] present a survey
on various intrusion detection techniques in the cloud.
Roschke et al. [9] and Dhage et al. [10] propose
management architecture for distributed IDS. Azmandian et
al. [11] present a hypervisor-based approach for detecting
intrusive activities. In [12], security issues related to the
virtualization technology are reviewed and a comparison
between traditional and modern monitoring techniques is
presented along with the weaknesses as well as their
protection and assurance levels. Dhage et al. [10] propose an
IDS architecture to be deployed in a distributed cloud
computing environment where separate instances are
installed for each user and managed by a single controller. In
[13], an IDS as a Service is proposed. The latter is a network
and signature-based IDS for the cloud that monitors and logs
network activities between virtual machines within a pre-
defined Amazon virtual private cloud.

On the other hand, works such as [14], [15] propose model
checking to analyze the correctness of IDS configurations.
More precisely, Tekaya et al. [14] use model checking of
temporal logic formulas to verify the correctness of the
intrusion detection system using the SMV model checker.
The properties are either verified if the behavior is normal,
or violated if the behavior is intrusive. In [15] a model
checking verification approach is presented to detect
specification errors in attack signatures of intrusion
detection.

The attack signatures specified using the Event Description
Language (EDL) are transformed to PROMELA and are
verified using the model-checker SPIN. Uribe et al. [16]
propose an approach for modeling and reasoning about the
configurations of a combination of network intrusion
detection systems (NIDS) and firewalls based on constraint
logic programming. Song et al. [17] propose a formal
framework for the analysis of intrusion detection systems
that use declarative rules for attack recognition. This is to
prove that a given IDS can detect all attacks that would
violate the security requirements of a given system.
Stakhanova et al. [18] present a framework for the analysis
of host and network-based IDS for conflict detection in the
rule-sets. In [19], a framework based on Event Calculus
(EC) for formal analysis of intrusion detection systems is
presented. It checks that security requirements are preserved

at runtime by monitoring the satisfaction of the
corresponding EC formulas.

2.2 IPsec VPN

As far as IPsec policy analysis and conflict detection are
concerned, to the best of our knowledge, there is very little
research work done towards these objectives. There is a
belief that the VPN tunnels are statically created when
needed by the actors and therefore there could not be any
erroneous IPSec configurations. But this is not the case in an
elastic cloud environment where VMs are moved around.
Most of the existing works focus on detecting and/or
resolving anomalies in a single IPsec device (called intra-
policy conflicts) and/or between multiple IPsec devices
(called inter-policy conflicts). As a first initiative, Fu et al.
[20] examine such anomalies and propose an algorithmic
approach to detect and resolve such anomalies. The
algorithm is meant to verify that a given IPsec
implementation satisfies a set of pre-defined requirements.
Hamad et al. [7] model IPsec policy using Ordered Binary
Decision Diagrams (OBDDs) and propose an algorithmic
approach based on Boolean operations over OBDDs to
detect anomalies. In [21] Niksefat and Sabaei improve the
efficiency of the approach in [7] by eliminating the need of
processing all the rules. Khoury et al. [22] propose
hierarchical colored Petri nets for specifying network data
traffic and abstract functions for modelling IPsec
mechanisms operations. Compared to these works, the
present paper tackles a different problem, which is verifying
that the modification of IPsec configuration after migration
has been consistently performed. Furthermore, we use the
well-established SAT-solving based technique, which have
been demonstrated to be more effective than BDD-based
approaches [23]. Jarraya et al. [24], [23] have examined
security policy verification in the context of VM migration,
but only consider verification of stateless firewall
configuration in the cloud environment. The present work
aims at verifying other security mechanisms, namely
intrusion detection and VPN/IPsec, which configuration
settings and objectives are different from firewalls.

3. Encoding Ids and IpSec Configurations as

Constraints

Constraint satisfaction is the process of finding a solution to
a propositional reasoning problem specified using a vector
of variables that must satisfy a set of constraints. A solution
is therefore a vector of values that satisfies all constraints.
Many problems including those of scheduling, test
generation, and verification can be encoded as CSP.
Constraint satisfaction problems are typically identified with
problems based on constraints on a finite domain. More
formally, a CSP is defined by a set of variables 𝑥𝑖 1≤𝑖≤𝑛 and
a set of constraints 𝐶𝑗 1≤𝑖≤𝑚

. Each variable 𝑥𝑖 is defined
within a domain 𝐷𝑖 of possible values. Each constraint 𝐶𝑗
involves all or a subset of the variables and specifies the
allowable combinations of values for that variables. A
statement of the problem is defined by an assignment of
values to some or all of the variables. A consistent or legal
assignment is one that does not violate any constraint. A
complete assignment is one in which all variables are

Paper ID: NOV151117 1696

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 11, November 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

assigned values. Programs that solve CSP problems are
called constraint solvers. We use the Sugar CSP-solver, a
SAT-based constraint solver based on a new SAT-encoding
method, namely order encoding [25]. Sugar accepts Lisp-
like expressions. For instance, the constraint 𝐶1∧ 𝐶2 is
equivalent to the expression (and 𝐶1 𝐶2) in Sugar syntax.
The complete language accepted by Sugar can be found in
[26]. There are two possible outputs for a problem submitted
to Sugar: either satisfiable (denoted hereafter as SAT), if all
constraints are satisfied or unsatisfiable (denoted hereafter as
UNSAT), otherwise. For instance, for a conjunction of
constraints 𝑐1 ∧⋯∧𝑐2, a SAT conclusion allows to infer that
 𝑐𝑖 1≤𝑖≤𝑛 are not disjoint whereas UNSAT conclusion asserts
the contrary.

In this work, we consider a Snort-based configuration
format. Snort is an open source widely deployed IDS. A
Snort rule consists of two sections, a rule header and rule
options. The rule header contains criteria for matching a rule
against data packets, and the action to be taken in case a
packet matches. The options part usually contains an alert
message as well as information about the parts of the packet
that should be used to generate the alert message. The
options part may also contain additional criteria for
matching a rule against data inside the packets. There are
three major action directives supported by Snort: pass, log,
or alert. Pass simply drops the packet. Log action writes the
full packet to the logging routine. Alert action generates a
notification event using the user-specified method, and then
logs the packet for later analysis. In the following, we
present how we encode IDS configurations in Sugar.

The CSP variables are the set of integer variables needed to
encode the monitoring attributes of IDS rules. In order to
represent an IP address, 4 integer variables within the range
[0, 255] are used. A source (resp. destination) IP address is
represented by 𝑠𝑖𝑝𝑖 1≤𝑖≤4 (resp. 𝑑𝑖𝑝𝑖 1≤𝑖≤4). The integer
variable pr ∈[0, 255] represents the protocol number. We
also define two other integer variables to encode the source
and destination port numbers, respectively ps and pd within
the range of values [0, 65535]. We encode the direction
(ingress, egress or bidirectional) using an integer variable dr
∈ [0, 1] so that 1 represents bidirectional traffic and 0
represents unidirectional traffic such that we switch the IP
addresses and the ports from source to destination and vice
versa to represent ingress or egress traffic. The action is
encoded using a variable act ∈ [0, 2] so that 0 represents
pass, 1 represents log, and 2 represents alert. To encode the
options we use a variable opt ∈ [0, 40000] so that each value
represents a unique option value. Since it is possible to have
more that one option, we encode them as a logical
conjunction formula of all options. The action in the rule
header is invoked only when all criteria in the options are
true. Thus, to encode IDS rules in CSP, we use a set of
integer variables {act, pr, sip1, sip2, sip3, sip4, ps, dr, dip1,
dip2, dip3, dip4, pd, opt}. Each single IDS rule predicate p
is encoded as a CSP constraint. The latter is a conjunctive
logical formula over the variables in V with their
corresponding values specified in the IDS rule. More
precisely, a CSP constraint is written as act = 𝑣1 ∧ pr = 𝑣2 ∧
sip1 = 𝑣3 … ∧ dip4 =𝑣12 ∧ pd = 𝑣13 ∧ opt = 𝑣14 where 𝑣𝑖 is
to be replaced by the actual value in the corresponding IDS
rule. The IDS is then encoded as a constraint C built as a

disjunctive logical formula over all constraints of the IDS
rules. Thus, the list of IDS rules {𝑅𝑛 , 𝑅𝑛−1, …… , 𝑅1} are
encoded as the logical formula 𝑅1∨ 𝑅2 ∨⋯∨𝑅𝑛 .

In order to encode IPsec configuration in Sugar, we reuse a
subset of the aforementioned CSP variables namely {pr,
sip1, sip2, sip3, sip4, ps, dip1, dip2, dip3, dip4, pd, act}. The
IPsec protocols ESP and AH are encoded using variable pr
(pr = 50 for ESP and pr = 51 for AH). To encode the mode
(transport or tunnel), we define a variable md, which values
are in {0, 1} such that 0 encodes transport mode and 1
encodes tunnel mode. For action, we use a variable act,
which has values in [0, 2] such that 0 encodes discard, 1
encodes bypass, and 2 encodes protect. For the case of
tunnel mode, the destination gateway is encoded using a
variable gw and its values are in [1,m] such that m is the
maximum number of gateways in the network. Also, a
variable param is defined to encode the authentication or
cryptographic algorithms being used such as 3DES, MD5,
and so on. Its values are in [1, n] such that n is the number of
authentication and cryptographic parameters available in the
configuration. In the case of an empty GW configuration, the
corresponding constraint will be the truth value „false‟.

4. Conclusion

In this paper, we proposed a verification approach that
checks the consistency of security configurations related to
IDPS and VPN/IPsec services. To this end, we defined new
security properties, namely intrusion monitoring and
VPN/IPsec protection preservations, and we derived a set of
formulas, which verification allows concluding on whether
these properties hold. These formulas are then encoded in
constraint satisfaction problems to be solved using the SAT-
based constraint solver Sugar. Our approach enables cloud
providers to automatically verify that at each migration
occurrence, security level of the hosted VMs (including the
migrating VM) is preserved. It also helps in detecting and
correcting the configuration errors if the verified properties
are violated. For future work, we consider implementing our
approach and elaborating on the possible deployment
architectures. Therefore, we plan to develop a software tool
that can automatically perform the verification with minor
human interactions.

References

[1] T. Garfinkel and M. Rosenblum,“A Virtual Machine
Introspection Based Architecture for Intrusion
Detection,” in In Proc. Network and Distributed
Systems Security Symposium, 2003, pp. 191–206.

[2] C. S. Alliance, “SecaaS Implementation Guidance,
Category 6: Intrusion Management,” September 2012.

[3] Amazon. (2013) Amazon Virtual Private Cloud FAQs.
[Online]. Available:
http://aws.amazon.com/vpc/faqs/#C5

[4] VMware, “Securing hybrid clouds with vmware
vshield edge vpns: A guide for providers of vcloud
powered services,”
http://www.vmware.com/files/pdf/vmware-
vshieldtechnical- brief.pdf, 2012, accessed May 2013.

[5] S. Shin and G. Gu, “CloudWatcher: Network Security
Monitoring using OpenFlow in Dynamic Cloud

Paper ID: NOV151117 1697

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 11, November 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Networks (or: How to Provide Security Monitoring as
a Service in Clouds?),” in Network Protocols (ICNP),
2012 20th IEEE International Conference on. IEEE,
2012, pp. 1–6.

[6] T. Wood, K. K. Ramakrishnan, J. Van Der Merwe, and
P. Shenoy, “Cloudnet: A Platform for Optimized WAN
Migration of Virtual Machines,” University of
Massachusetts, Tech. Rep., 2010.

[7] H. Hamed, E. Al-Shaer, and W. Marrero, “Modeling
and Verification of IPSec and VPN Security Policies,”
in the Proc. Of the 13th IEEE International Conference
on Network Protocols (ICNP), Nov. 2005.

[8] C. Modi, D. Patel, B. Borisaniya, H. Patel, A. Patel,
and M. Rajarajan, “A Survey of Intrusion Detection
Techniques in Cloud,” Journal of Network and
Computer Applications, vol. 36, no. 1, pp. 42 – 57,
2013.

[9] S. Roschke, F. Cheng, and C. Meinel, “Intrusion
detection in the cloud,” in Dependable, Autonomic and
Secure Computing, 2009. DASC ‟09. Eighth IEEE
International Conference on, Dec. 2009, pp. 729 –734.

[10] S. N. Dhage and B. B. Meshram, “Intrusion Detection
System in Cloud Computing Environment,”
International Journal of Cloud Computing, vol. 1, no.
2, pp. 261–282, 2012.

[11] F. Azmandian, M. Moffie, M. Alshawabkeh, J. Dy, J.
Aslam, and D. Kaeli, “Virtual Machine Monitor-based
Lightweight Intrusion Detection,” SIGOPS Oper. Syst.
Rev., vol. 45, no. 2, pp. 38–53, July 2011.

[12] F. Tsifountidis, “Virtualization Security: Virtual
Machine Monitoring and Introspection,” Master‟s
thesis, Royal Holloway, University of London, UK,
2010.

[13] T. Alharkan and P. Martin, “IDSaaS: Intrusion
Detection Systemas a Service in Public Clouds,” in
CCGRID, 2012, pp. 686– 687.

[14] I. B. Tekaya, M. Graiet, and B. Ayeb, “Intrusion
Detection with Symbolic Model Verifier,” in ICSEA
2011, The Sixth International Conference on Software
Engineering Advances, 2011, pp. 183–189.

[15] S. Schmerl, M. Vogel, and H. K¨onig, “Using Model
Checking to Identify Errors in Intrusion Detection
Signatures,”Int. J. Softw. Tools Technol. Transf., vol.
13, no. 1, pp. 89–106, January 2011.

[16] T. E. Uribe and S. Cheung, “Automatic Analysis of
Firewall and Network Intrusion Detection System
Configurations,” in Proceedings of the 2004 ACM
workshop on Formal methods in security engineering,
ser. FMSE ‟04. New York, NY, USA: ACM, 2004, pp.
66–74.

[17] T. Song,“Formal reasoning about intrusion detection
systems,” Ph.D. dissertation, University of California,
Davis, 2007.

[18] N. Stakhanova, Y. Li, and A. A. Ghorbani,
“Classification andDiscovery of Rule
Misconfigurations in Intrusion Detection and Response
Devices,” in Proceedings of the World Congress
onPrivacy, Security, Trust and the Management of e-
Business, ser. CONGRESS. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 29–37.

[19] M. Rouached, H. Sallay, O. B. Fredj, A. Ammar, K.
Al-Shalfan, and M. Ben, “Formal Analysis of Intrusion
Detection Systems for High Speed Networks,” in

Proceedings of the 9th international conference on
Advances in e-activities, information security and
privacy. Wisconsin, USA: World Scientific and
Engineering Academy and Society (WSEAS), 2010,
pp. 109–114.

[20] Z. Fu, S. F. Wu, H. Huang, K. Loh, F. Gong, I.
Baldine, and C. Xu, “IPSec/VPN Security Policy:
Correctness, Conflict Detection and Resolution,” in the
Proc. of the 2nd IEEE International Workshop on
Policies for Distributed Systems and Networks
(POLICY), ser. LNCS, vol. 1995. Springer, 2001, pp.
39–56.

[21] S. Niksefat and M. Sabaei, “Efficient Algorithms for
Dynamic Detection and Resolution of IPSec/VPN
Security Policy Conflicts,” in Proceedings of the 2010
24th IEEE International Conference on Advanced
Information Networking and Applications, ser. AINA
‟10. Washington, DC, USA: IEEE Computer Society,
2010, pp. 737–744.

[22] H. E. Khoury, R. Laborde, F. Barr`ere, M. Chamoun,
and A. Benzekr, “A Formal Data Flow-Oriented Model
For Distributed Network Security Conflicts
Detection,” in Network Operations and Management
Symposium, 2008. NOMS 2008. IEEE, March 2012,
pp. 20–27.

[23] Y. Jarraya, A. Eghtesadi, M. Debbabi, Y. Zhang, and
M. Pourzandi, “Formal Verification of Security
Preservation for Migrating Virtual Machines in the
Cloud,” in SSS, 2012, pp. 111–125.

[24] “Cloud calculus: Security Verification in Elastic
Cloud Computing Platform,” in CTS, 2012, pp. 447–
454.

[25] N. Tamura and M. Banbara, “Sugar: A CSP to SAT
TranslatorBased on Order Encoding,” in the
Proceedings of the SecondInternational CSP Solver
Competition, 2008, pp. 65–69.

[26] “Syntax of sugar,” http://bach.istc.kobe-
u.ac.jp/sugar/current/docs/syntax.html, last Accessed:
March 2013.

Paper ID: NOV151117 1698

