
International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 

Volume 4 Issue 11, November 2015 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Mining Sequential Patterns from Probabilistic with 
Source Level Uncertainty 

  
Venkata Sasidhar Puli 

 
 M-Tech, Department of Computer Science and Systems Engineering, Andhra University, Visakhapatnam, Andhra Pradesh 

 
 

Abstract: Sequential Pattern Mining (SPM) is an important data mining problem. Although it is assumed in classical SPM that the 

data to be mined is deterministic, it is  recognized that data obtained from a wide variety of data sources is inherently noisy or 

uncertain, such as data from sensors or data being collected from the web from different (potentially conflicting) data sources. 

Probabilistic database is a popular framework for modeling uncertainty. Recently, several data mining and ranking problems have been 

studied in probabilistic databases. In this work we proposed one of the uncertainty models for spm, namely source level uncertainty 

which is covered under the framework of probabilistic databases framework. We give a dynamic programming algorithm to compute 

the source support probability and hence the expected support of a sequence in a source-level uncertain database. We then propose 

optimizations to speed up the support computation task. Next, we propose probabilistic SPM algorithms based on the candidate 

generation and pattern growth frameworks for the source-level uncertainty model and the expected support measure. We implement 

these algorithms and give an empirical evaluation of the probabilistic SPM algorithms and show the scalability of these algorithms 

under different parameter settings using both real and synthetic datasets. Finally, we demonstrate the effectiveness of the probabilistic 

SPM framework at extracting meaningful patterns in the presence of noise. 

 
Keywords: Uncertainty, SPM, Probabilistic database, optimization.  

 

1. Introduction 
 
In data mining finding frequent  sequential patterns from data 
with constrain to time is an crucial milestone in retail 
marketing through that it easily predicts next affordable item 
and dumps in to our own interesting list but, the data which 
to be mined should be anomaly free. (i.e) the data should be 
certain, accurate and deterministic in nature. 
 
But the data to be mined in pragmatic world ‘s applications 
are  uncertain, incomplete, incorrect, imprecise, inconsistent 
due to various regions, generally we term it as noisy or dirty. 
Classical sequential pattern mining works only on clean data 
in order to achieve that data preprocessing (or) data cleaning 
phase is applied prior to the actual mining. but, the problem 
with that is valuable information loss. Consider a scenario 
where excessive normalization leads to increase in tables 
likewise excessive data cleansing leads to non-trivial data 
loss.  
 
Probabilistic database is a popular framework for modeling 
nondeterministic data. Probabilistic databases are finite set of 
possible worlds where each possible world having some 
probability out of which one possible world becomes true 
possible world. Classical spm with event database the tuples 
are in the form of <eid,e, σ  >  where eid represents event-id 
associated with timestamp, σ   is the source for example in a 
retail transaction recording the retail transaction is the event, 
the customer is the source, and event-id is the time of event 
happen. In spm Uncertainty may occur at any part source, 
event or event-id(timestamp) or  perhaps at all three parts 
also but we pay attention mainly at source that is source level 
uncertainty(SLU). Such source level uncertainties are: 
 A customer (source) purchases some items(event) in a 

retail store at the time he fills a identity information  and 
during his successive second visit he again fills the identity 

information with little contradiction to the previous one. 
Then uncertainty  arises at source attribute. 

 The logged In person(source) searches for the sequence 
name APPLE(event) the search  term  comes with  result 
{(phone company:0.6), (fruit:0.2), (software 
solutions:o.1)……}. 

 
2. Related work 
 
The uncertainties occurred in sequential pattern mining are 
modeled in probabilistic databases framework either as tuple 
level uncertainty or attribute level uncertainty. In tuple level 
uncertainty, tuples have existential probabilities and in 
attribute level uncertainty may arise at event or uncertainty 
may arise at source attribute. 
 
Yang proposed a model based on uncertainty at event. But, it 
does not considered source to be uncertain it is just like ELU 
model where event only uncertain, even less flexible to ELU. 
So, there is a need to implement a model which compromises 
source level uncertainty also. Computing the probabilistic 
frequentness of an item set in an uncertain database is a 
computationally expensive task (sometimes it takes non 
polynomial time) so approximating the probabilistic 
frequentness of an item set is implemented. 
 
Dynamic programming based algorithm is implemented for 
computing expected support and then,  extended the classical 
SPM algorithms based on the candidate generation and 
pattern growth frameworks to work under probabilistic 
settings for the SLU model using the expected support 
measure. 
 
In all, we implemented two candidate generation algorithms, 
one based on a breadth-first and one based on a depth-first 
exploration of the search space, as well as a pattern growth 
algorithm based on the idea of projected database. 

Paper ID: NOV151090 241



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 

Volume 4 Issue 11, November 2015 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Empirical evaluation of the optimizations and algorithms that 
we implemented are demonstrated by the scalability of our 
algorithms under different parameter settings using both 
synthetic and real datasets and also evaluated the 
effectiveness of the probabilistic SPM framework at 
extracting meaningful patterns in the presence of noise 
 
3. Methodology 

 
Expected Support 

We define the expected support of a sequence s in a 
probabilistic database Dp using possible world semantics. As 
every possible world D* is a (deterministic) database, the 
support of s in D*, denoted by Sup(s,D*). We then define the 
expected support of a sequence s in a probabilistic database 
Dp as follows: 
 

 
We now give examples of computing the expected support of 
a sequence h(a)(b)i for each of the sample probabilistic 
databases using the possible worlds. 
 

Computing dp in slu database 

 
 
Algorithm  Breadth-First Exploration 

1. Input: An SLU database Dp and a support threshold θ. 
2. Output: All sequences s with ES(s,Dp) ≥ θ. 
3. j ← 1 
4. L1 ← ComputeFrequent-1(Dp) 
5. while Lj−1 != ∅ do 
6. Cj ← Join Lj−1 with itself 
7. Prune Cj 
8. for all s ∈ Cj do 
9. Compute ES(s,Dp) 
10. end for 
11. Lj ← all sequences s ∈ Cj s.t. ES(s,Dp) ≥ θ. 
12.  j ← j + 1 
13. end while 
14. Stop and output L1 ∪ . . . ∪ Lj−1 

 
The algorithm function is similar to apriori. The length of a 
sequence is the number of items in it. A sequence having 
length j is called a j-sequence. The set of candidate j-
sequences is called Cj and the set of frequent j-sequences is 
called Lj . For j = 2 onwards, the input to the j-th phase is the 
set Lj−1, and the output is the set Lj . In our BFS approach, 
the algorithm first makes a pass over the SLU database Dp 
and computes all the frequent 1-sequences using the fast 
frequent 1-sequence computation . Then, the following steps 
are performed in any phase j ≥ 2. The set Lj−1 is used to 
obtain Cj, and while generating Cj, a-priori pruning is 
applied to Cj and thus, Cj contains only those candidate j-

sequences that pass the apriori pruning. In addition to apriori 
pruning, probabilistic pruning can also be applied to Cj. 
Then, we perform the support computation for Cj , and the 
candidate j-sequences having support at least θ is the set of 
frequent j-sequences Lj . The algorithm stops when no more 
frequent sequences can be found, or when no more candidate 
sequences can be generated, and outputs all the frequent 
sequences. 
 
Candidate Generation: In the j-th phase, we generate the 
set of candidate j-sequences Cj from the set of frequent (j − 
1)-sequences Lj−1. The objective of candidate generation is 
to generate the smallest possible superset Cj of the set of 
frequent j-sequences Lj . 
 

Computing Expected Support: The expected support for all 
the sequences s ∈ Ni,j , and while performing this task, we 
intend to reuse already computed results in order to save 
CPU cost. 
 
S-extension: We generate an S-extension t of s by appending 
an item {x} as a new element to s. We first apply partial 
apriori pruning to t, say if t is a j-sequence, we first check to 
see if all the lexicographically smaller (j − 1)-subsequences 
of t that would have already been explored in the mining 
process are also frequent.  
 
Further, suppose that we S-extend a sequence s with an item 
xi ∈ L1 to obtain t = hsi · {xi} and suppose that t is not 
frequent. extend s with some other item xj ∈ L1 to obtain t′ = 
hs · {xj}i and t′ is frequent. The apriori property that hs · 
{xj} · {xi}i can not be frequent either as it contains an 
infrequent sub-sequence hs·{xi}i. Thus, if an extension of s 
using xi is not frequent, mark xi as an invalid S-extension for 
s and do not consider extending any of the sequences for 
which s is a prefix with xi  
 
I-extension: In  I-extension t of s by appending an item {x} 
to the last element in s. Similar to the S-extension case, and 
then partial apriori pruning to t. Then, suppose that a 
sequence s = hs1, . . . , sqi is I-extended with an item xi ∈  
L1, i.e. t = hs1, . . . , sq ∪  {xi}i, and suppose that t is not 
frequent. We mark xi as an invalid I-extension for s and do 
not consider extending any of the sequences for which s is a 
prefix with xi. For example, for a sequence h(a)i, suppose 
that {b} is an invalid I-extension as h(a, b)i is not frequent 
then, we do not need extending h(a)(c)(a)i 
with {b} either.  
 
Depth-First Traversal 

1. Input: SLU probabilistic database Dp and a sequence s. 
2. Output: All possible extensions of s with ES(s,Dp) ≥ θ. 
3. function TraverseDFS(s, L1) 
4. L ← ∅ 
5. for all valid x ∈ L1 in order do 
6. t ← hs · {x}i {S-extension} 
7. if t is not pruned then 
8. Compute ES(t,Dp) 
9. if ES(t,Dp) ≥ θ then 
10. L ← L ∪ t 
11. TraverseDFS(t, L1) 

Paper ID: NOV151090 242



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 

Volume 4 Issue 11, November 2015 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

12. end if 
13. else 
14. Mark {x} as invalid S-extension item. 
15. end if 
16. t ← hs1, . . . , sq ∪ {x}i {I-extension} 
17. if t is not pruned then 
18. Compute ES(t,Dp) 
19. if ES(t,Dp) ≥ θ then 
20. L ← L ∪ t 
21. TraverseDFS(t, L1) 
22. end if 
23. else 
24. Mark {x} as invalid I-extension item. 
25. end if 
26. end for 
27. return L 
28. end function 
 
The algorithm first makes a pass over the SLU database Dp 
and computes all the frequent 1-sequences L1. Assume that 
the sequences in L1 are in ascending order. Next, starting 
with each frequent 1-sequence s ∈  L1, s is both S- and I-
extended with every valid item x ∈  L1 and then for all 
extensions t of s, and then apply partial apriori pruning  to t. 
In addition to partial apriori pruning, probabilistic pruning 
could also be applied. If t passes the pruning test, we 
compute the expected support of t in Dp and if t is found to 
be frequent, we keep exploring the search space by extending 
t using valid x ∈  L1, recursively. The algorithm stops when 
no more candidate sequences can been generated or when no 
more frequent sequences can be found, and outputs all the 
frequent sequences.  
 
Support Computation: 
Given a sequence s, the support computation task is to 
compute the expected support of s in the probabilistic 
database Dp. We propose two optimizations for this. 1. 
Observe that for a sequence t, where t is an S- or I-extension 
of s, for source i, if Pr[s _ Dpi ] = 0, then Pr[t _ Dpi ] = 0, i.e. 
if source i does not support s it cannot support t. When 
computing the expected support of s in Dp, we keep track of 
all the sources where Pr[s _ Dpi ] > 0, denoted by Ss, and 
when computing the expected support of t in Dp, we need 
only to visit the sources in Ss. 
 
2. Further, when doing the support computation for s, we 
save the Bi,s array with every source i ∈  Ss. When 
considering an S- or I-extension of s, we can use incremental 
support computation by reusing results from Bi,s. As the Bi,s 
arrays are stored for all sources i ∈  Ss with each recursive 
call of DFS, in the worst case, a source may store up to j 
arrays, if s is a j-sequence. 
 
Pattern-Growth Algorithm 

1. Input: SLU probabilistic database Dp and support 
threshold θ. 

2. Output: All sequences s with ES(s,Dp) ≥ θ. 
3. L1 ← ComputeFrequent-1-sequences(Dp) 
4. for all sequences x ∈ L1 do 
5. Compute Bi,x arrays 
6. Call ProjectedDB(x, Ds,p) 
7. end for 

8. function ProjectedDB(s, Ds,p) 
9. LS ← Compute Frequent S-extensions 
10. LI ← Compute Frequent I-extensions 
11. Output all Frequent Sequences {s extended with x, for 

all x in LS and LI} 
12. for all x ∈ LS do 
13. t ← hs · {x}i {S-extension} 
14. Compute Bi,t arrays 
15. ProjectedDB(t, Dt,p) 
16. end for 
17. for all x ∈ LI do 
18. t ← hs1, . . . , sq ∪ {x}i {I-extension} 
19. Compute Bi,t arrays 
20. ProjectedDB(t, Dt,p) 
21. end for 
22. end function 
 
Pattern Growth step: 

 
1. s = hs1, . . . , sqi is a previously discovered frequent 

sequence. 
2. An hsi-projected database Ds,p is available. 
3. The Bi,s arrays for all sources i in Ds,p are also available. 
 
Pattern Growth Algorithm 

 
An overview of our pattern-growth algorithm is in Algorithm 
5. Assuming that the probabilistic database Dp contains only 
the frequent items, we first compute the set of frequent 1-
sequences L1. Assume L1 is in ascending order. For each 1-
sequence hxi, we first create an hxi-projected database Dx,p, 
and also compute 133 Chapter 6. Probabilistic SPM 
Algorithms the Bi,x arrays for each source i in Dx,p and then 
call the ProjectedDB(x, Dx,p) sub-routine recursively. In the 
ProjectedDB(s, Ds,p) sub-routine, we compute all the 
frequent S- and I-extensions of s using a modification of fast 
frequent 1-sequence computation. We call the computation of 
all S- and I-extensions of a sequence s the pattern-growth 
step, and elaborate on it in the coming section. Then, for 
every sequence t which is a frequent S- or I-extension of s, 
we create a hti-projected database Dt, p and also compute 
Bi,t arrays, and call the ProjectedDB(t, Dt,p) sub-routine 
recursively to mine all frequent sequential patterns. 
 

 
 

 
 

Paper ID: NOV151090 243



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 

Volume 4 Issue 11, November 2015 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

 
 

 
 
4. Conclusion 
 
The main objective of this paper is to study the sequential 
pattern mining (spm) problem in probabilistic databases. 
They are many works on spm in uncertain data. But, these are 
not capable of presenting basic problems in spm.  This paper 
proposed extensively the concept of dynamic programming 
for better computing of expected support and two algorithms 
based on candidate generation and one algorithm based one 
pattern growth. There are some problems like FP-tree does 
not produce better results in uncertain FIM and dependencies 
in several sources is also the problem. 
 

References 
 

[1] Nilesh N. Dalvi, Christopher R´e, and Dan Suciu. 
Probabilistic databases: diamonds in the dirt. 
Communications of the ACM, 52(7):86–94, 2009. 

[2] O. Hassanzadeh and R. J. Miller. Creating probabilistic 
databases from duplicated data. The VLDB Journal, 
18(5):1141–1166, 2009. 

[3] Graham Cormode, Feifei Li, and Ke Yi. Semantics of 
ranking queries for probabilistic data and expected ranks. 
In ICDE, pages 305–316. IEEE, 2009. ISBN 978-0-7695- 
3545-6. 

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. 
Rivest, and Clifford Stein. Introduction to Algorithms 
(3rd edition). MIT Press, 2009. ISBN 978-0-262-03384-
8. 

[5] Aggarwal, C.C., Li, Y.,Wang, J.,Wang, J.: Frequent 
pattern mining with uncertain data. In: KDD. pp. 29{38 
(2009) 

[6] Agrawal, R., Srikant, R.: Mining sequential patterns. In: 
ICDE. pp. 3{14 (1995) 

Paper ID: NOV151090 244




