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Abstract: Modal analysis techniques are applied to characterize the planar dynamic characteristics of two planetary gears. Rotational 

and translational vibrations of the sun gear, star gear, and planet gears are displayed in planetary transmission system. This paper 

obtained star and planetary gear system vibration mode, coupling vibration modal under different classes of frequencies, and are observed 

in the analysis and compared to the results from planetary transmission system land based integration test. The first level of star gear and 

second planetary gears in the respective gear transmission around sun gear equal spacing layout, regularity modal system vibration is 

obvious. 
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1. Introduction 
 
While planetary gearboxes usually have unequally spaced 
planets, some planetary gears have equally spaced planets due 
to the limitations of assembly conditions or special 
applications [1-3].  
 
Considering subject requirements, Table 1-2 summarizes the 
basic parameters of two stage power branch at all levels of 
double planetary composite transmission system for 
underwater device. First hypothesis star and second planetary 
gear in the gear train around the sun gear spacing, planet and 
star gear structure are same, two star gear and planetary gear 
bearing support stiffness are equal, engaging star or planet and 
sun gear meshing stiffness are equal, star or planet gear and 
ring gear stiffness are equal. As shown in Table 2, multiplicity 
table numbers in parentheses is the inherent frequency, natural 
frequency is not marked as a single. 
 
In the literature, many studies exist on the mode shapes, Parker 
and Wu [4] analytically investigated the vibration modes of 
planetary gears with unequally spaced planets and an elastic 
ring gear. Guo and Parker [5] studied the modal properties of 
compound planetary gears using a model with only rotational 
degrees of freedom. Recently, Cooley and Parker examined 
gyroscopic system eigenvalue behavior in high-speed 
planetary gears [6], which can take advantage of the modal 
properties derived in this work.  
 
2. System Vibration Mode 
 
The modal shapes are fundamental when dealing with an 
existing vibration problem or designing new systems to avoid 
resonant vibration, as gear engineers routinely need to do. This 
paper provides detailed and rigorously derived properties of 
the modes for planetary gears with equally spaced planets. The 
work provides knowledge engineers can use in practice as well 

as modal properties critical to further research on resonant 
vibration response, non-linearity, diagnostics, and the like. 

Table 1: System parameters 
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Shaft torsional Stiffness (N.m/rad) 12 8
rsuk 2.0 10   

Pressure angle ( 0 ) 
sm rm

sn rn 20
 

 

 

 
 

Helix angle ( 0 ) bm bn 25.23    

In Tab. 2, Quality (Q) (kg), Equivalent moment inertia (Emi) 
(kg), Base circle diameter (Bcd) (mm), Number teeth (Nt). 

Table 2: System parameters 

 
Sun gear Ring gear Star/planet 
Ⅰ Ⅱ Ⅰ Ⅱ Ⅰ Ⅱ 

Q 98 395 256 645 298 645 
Emi 52 198 243 612 148 322 
Bcd 384.6 476. 1698 1697 656 608 
Nt 43 53 183 183 72 67 

 
2.1 Star gear system vibration mode 

 
The mode shapes calculated and summed up three kinds of the 
system vibration modals: star gear vibration modal, planetary 
gear vibration modal and modal coupling [7-9]. 
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The first stage star gear in planetary gear vibration system, 
when no vibration, called this mode is the star gear vibration 
mode [10-12]. These variation laws:  
 
(1) Star gear numbers are certain, the number of planetary gear 
is changed, the natural frequency of the system without 
change. The modal properties of planetary gears with equally 
spaced based on the discrete and lumped-parameter models. 
 
(2) The number of planetary gear is constant, with the increase 
of star gear numbers, the system variation of natural frequency 
is not significant [13-15]. For equally spaced planets with even 
N, all the modes fall into two types: M＞3 rotational modes 
and M-3 translational modes. The total number of rotational 
and translational modes equals the total degrees of freedom, so 
no other mode types are possible. In these frequencies, 
vibration central is component of star gear, star formation rate, 
with natural frequency Table 3 corresponding to 934.8Hz, 
1259.6Hz and 2474.7Hz; and a single frequency, center star 
gear components is only torsional vibration, gear deformation 
is the same as in Table 3, and the corresponding frequency is 
6638.8Hz. 

Table 3: Natural frequencies of the system with star gear 
numbers M=4 

 N=3 N=4 N=5 

Star gear system 
vibration modal 

frequency（Hz） 

934.8      
1259.6 
1533.4     
1545.2 
2474.7     
3729.6 
6638.8 

934.8      
1259.6 
1533.4     
1545.2 
2474.7     
6638.8 

934.8      
1259.6 
1533.4     
1545.2 
2474.7     
3729.6 
6638.8 

Planetary gear 
vibration modal 

frequency（Hz） 

516.8(2) 
707.9(2) 

1043.1(2) 
1152.3(2) 
1544.2(2) 
2696.7(2) 

494.3(2) 
726.9(2) 

972.7 
1027.9(2) 
1163.8(2) 

1173.1 
1664.7(2) 

2015.6 
3205.8(2) 

473.5(2) 
743.2(2) 
972.7(2) 

1016.8(2) 
1179.1(2) 
1173.1(2) 
1778.8(2) 
2015.6(2) 
3427.8(2) 

Coupling 
vibration modal 

frequency（Hz） 

486.1      
691.1 
797.7     
826.8 
864.8      
927.6 
941.2      
972.7 

1063.2     
1078.8 
1116.9     
1132.7 
1301.4     
1376.4 
1761.6     
3389.7 

 

470.8      
690.9 
825.6      
826.7 
864.7      
927.3 
939.8      
975.1 

1063.1     
1078.7 
1133.2     
1141.3 
1300.8     
1440.6 
1763.1     
3717.9 
3729.6     
3729.6 

455.7      
690.9 
826.8      
843.6 
864.6      
927.2 
939.7      
969.8 

1063.1     
1078.7 
1133.2     
1174.1 
1300.8     
1503.3 
1763.1     
4017.8 

 

 

2.2 Planetary gear system vibration mode 
 
Second stage planetary gear train vibration, when first stage 
star gear train without vibration, called the modal vibration 
mode is planetary gear system [16-18]. The change rules: 
 
(1) Star gear numbers are certain, with the increase of 
planetary gear numbers, the natural frequency of system 
overall trend is increasing; the natural frequency of two order 
modes is decreasing. When N / 2  is even, N / 2 1 is odd. 
Accordingly, half in N 3  are odd and the other half are 
even. Thus, planet modes contain odd nodal diameter 
components, and they evolve into translational modes; planet 
modes evolve into rotational modes, where the additional 
modes come from the distinct planet modes. At these 
frequencies, star gear, planetary gears and coupling vibration 
modal frequency corresponding respectively are 972.7Hz, 
1173.1Hz and 2015.6Hz, as shown in Table 3.  
 
(2) When the planetary gears numbers are fixed, the number 
change of star gear and the system natural frequency remain 
unchanged, the total numbers are 3 ( N 1)  . 
 
2.3 System Coupling Vibration Modal 

 
The first stage star gear train coupling, when second stage 
planetary gear system have vibration, which called the modal 
coupling vibration mode [19]. These change rules are: 
 
(1) When star gear numbers are certain, planetary gear 
numbers are changed, the system inherent frequency change is 
small, the system without repeated root [20]. 
 
(2) When planetary gear numbers are certain, star gear 
numbers are changed, the system natural frequency is showed 
an overall increasing trend [21]. 
 
(3) Following the change of star gear or planetary gears 
numbers, natural frequency and vibration modal and star 
shaped gear coupling vibration mode is shifting [22].  
 
A typical vibration  M N 4   mode component, as shown 
in Figure 1, 2 and 3. Solid line represents the actual location 
component after exercise, dotted lines indicates the location of 
the original assembly. In order to make these pictures clear and 
concise, gear ring and a planet frame are given only 
translational, torsional deformations do not mention.  
 
Details of the model in Fig. 1 including  typical vibration 
modal of star gear train, in Fig. 1 a), b) ,c), natural frequencies 
of vibration mode corresponding respectively are 934.8Hz, 
1259.6Hz and 2474.7Hz, when their multiplicities are M-3, 
Fig. 1 d) corresponding to single frequency is 6638.8Hz. 
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a) Star system mode (934.8Hz) 

 
b) Star system mode (1259.6Hz) 

 
c) Star system mode (2474.7Hz) 

 
d) Star system mode (6638.8Hz) 

Figure 1: Typical vibration mode of star system 
 M N 4   

 

 
a) Planet system mode (972.7Hz) 

 
b) Planet system mode (1173.1Hz) 

 
c) Planet system mode (2015.6Hz) 

 
d) Planet system mode (494.3Hz) 

Paper ID: 3111501 910



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 

Volume 4 Issue 11, November 2015 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

 
e) Planet system mode (494.3Hz) 

Figure 2: Typical vibration mode of planet system 
 M N 4   

 

 
a) Star system (470.8Hz) 

 
b) Planet system (470.8Hz) 

Figure 3: Typical coupling vibration mode  M N 4   

 
Fig. 1 a), b) ,c) can be seen, when star gear no moving 
component , deformation in three directions with a certain 
proportion , as Fig. 1 d) shown mode corresponding is single 
frequency, the central component of star gear train only 
torsional movement, deformation is the same.  
 
As Fig. 2 a), b), c) shown natural frequencies of vibration 

mode corresponding respectively are 972.7Hz, 1173.1Hz and 
2015.6Hz, when their multiplicities are N 3 , from Fig. 2 d) 
and e) seen vibration mode of a double root inherent frequency 
corresponds to 494.3Hz. 
 
Fig.3 defined the mode of star gear and planetary gear train 
components coupled vibration mode. Coupled vibration mode, 
each component has star gear and planetary gear train 
vibration type, vibration type of star gear train as shown in 
Fig.3 a), vibration type of planetary gear system as shown in 
Fig.3 b). 
 
As shown in Fig.3 a), center star gear train components not 
only translational motion, but also torsion with the three 
movement direction, but vibration characteristics is no 
regularity. Planetary gear vibration shown in Fig.3 b), center 
component is only torsion deformation. 
 
Can be seen from the above analysis, when the interaction 
between the two stages, the first stage star gear train is 
maximum. Although the second stage planetary gear train 
components mode still has certain regularity, but planetary 
gear vibration modal is diversity. 
 
The next step analysis is the modal characteristics and each 
vibration mode relation, according to the vibration 
characteristics of the simplified system value problem, the 
modal characteristics is corresponding. 
 
3. Characteristics Analysis 
 
3.1 Star Gear Vibration Modal Analysis 

 
The star gear vibration mode has the following characteristics: 
(1) In planetary gear system, sun gear, ring gear, planetary gear 
and a planetary frame vibration displacement respectively are 
zero, hp 0  , h c,r,s , np 0   , n 1 N  .  
 
(2) When there is a single frequency, the expression of the 
deformation of center star gear train components 
gives, h hp [0,0,u ]  , h r,s . 
 
(3) When there are three natural frequency began to appear in 
time, and the repeated root number is M 3 .  
 
First inspects the modal characteristics of three natural 
frequencies with multiple root of the star gear, the expression 
of the modal shape:  

T
i 1 m 1f [0,0, p ,...,w p ,0,0,0,0,...,0]                                       (1) 

 
When modal planetary gear vibration modal type and single 
stage planetary gear are similar, the equations become 
respectively.  

2
rp bm 1 rm 1 rm 1

rm

m rm

k cos ( sin - cos - u )

- sin
w cos 0

1
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



 
 
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m sm
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m 2
pm i p m 1( K - M )w p 0,m 1,2,L,M                                       (4) 

The remaining equations in (2) vanish. Similarly, (3) and (4) 
reduce to the following equations. 

m m

m m

m

w cos 0

w sin 0

w 0

















                                                                               (5) 

Where i is multiplicity of eigenvalues for the 
equations M 3 , 1p  equations from Eq. (4) for the planet 
motions.  
Eq. (5) can be regarded as the freedom system of 
homogeneous linear equations linear transform results, have 
M-3 group nonzero linear independent solutions.  
 
With the modal expressions (4) and (5) and straight forward 
manipulation, the following modal characteristics equations.  

2 2
1 pm m m bm p( k 2k cos cos ) / m                                        (6) 

Substituting (4) and (5) into (6), determining by 2 , 3  
equations for star mode system respectively, Eq. 7 is discussed 
below.  

2 2
pum m bm p2

p

2 2
pm m m bm
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pm pum m bm pm p

p p
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m bm pum m p
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k k 2k cos k ( r )

m I

2k cos k sin ( r )
0
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

 



    
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

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



 







  

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                     (7) 

Where 1 , 2  and 3  equations, these vibration mode are 
corresponding.  
 
When M 3 , a star gear mode calculated, pure radial, 
tangential and rotation of the star pure torsional motion, 
and m 0  . 
 
Eq. (2) represents the applied force and the star gear toothed 
ring on the resultant moment, as can be seen, applied force and 
the ring gear of the resultant moment is zero. By the same Eq. 
(3) shown, applied force and the sun gear force moment is 
zero.  
 
When M  is even, where m

mw ( 1)  . 
 
Substitution of (3) and (4) into (5), (6) and (7) generates the 
following three equations.  
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
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1 T 1 T
r 2 r s2 s
1 2
pm i p 1

( K ) p ( K ) p

( K - M )p 0

 
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 


                                      (10) 

For each Eigen solution of this reduced eigenvalue problem, 
the full system mode is constructed from (8), (9) and (10). 
Generally, all the eigenvalues are distinct. Compared to the 
translational modes of planetary gears with equally spaced 
planets. These additional translational modes are discussed 
below.  
 
3.2 Planetary gear vibration modal analysis 

 
An interesting question is: when the planet spacing changes 
from equally spaced (with an even number of planets), how do 
the planet and purely ring modes, which exist only for equally 
spaced planets, evolve into rotational or translational modes? 
The rule is: If a mode for equally spaced planets has odd nodal 
diameter ring components, it evolves into a translational mode 
when the planets are diametrically opposed; if a mode has even 
nodal diameter ring components, it evolves into a rotational 
mode. To apply this rule, note that for equally spaced planets 
with even N, the nodal diameter components of any mode are 
all even or all odd; for diametrically opposed planets, 
translational modes have all odd nodal diameter components 
while rotational modes have all even nodal diameter 
components. The vibration modal of planetary gear has the 
following characteristics.  
 
Some clues guide the justification of the above rule. Every 
mode for equally spaced planets must evolve into either a 
rotational mode or a translational mode as the planets deviate 
to the diametrically opposed case.  
 
Because of the continuity of the modes for changes in planet 
spacing, equally spaced modes retain this property when the 
planet spacing changes to diametrically opposed. One can 
imagine small deviations from equal spacing to clarify this 
continuity argument, but the conclusion is not restricted to that 
case; the properties established for small deviations must also 
hold for large deviations because the foregoing proof of the 
modal properties is not limited to small deviations [11]. 
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When no vibration center component in planetary gear train, 
the vibration displacement sun gear is zero, when n n 1p w p  , 
where nw  is the proportional coefficient, 1w 1 , 
n 1,2, N  . 
 
This indicates planet modes, whether distinct or degenerate, 
having odd (even) nodal diameter components will evolve into 
translational (rotational) modes as the planets change from 
equally spaced. 
 
The deflections of the planets (and all other rigid components) 
are zero for a purely ring mode. Thus, using the deflections of 
the planets as the condition to determine which type of mode it 
will evolve into does not work. A purely ring mode has one 
and only one nodal diameter component. For continuity of the 
modes, the mode that a purely ring mode evolves into should 
contain at least that specific nodal diameter component. Thus, 
if the purely ring mode has an odd nodal diameter component, 
the corresponding diametrically opposed mode will contain 
that (and other) odd nodal diameter components; this means 
the purely ring mode evolves into a translational mode. 
Similarly, if the purely ring mode has an even nodal diameter 
component, it evolves into a rotational mode. 
 
Case 1: When N/2 is odd, there are (N−2)/4 even M and 
(N−6)/4 odd M for M in [2, N/2−1]. Thus, (N/2−1) (2M-3) 
degenerate planet modes contain even nodal diameter 
components, and they evolve into rotational modes; (N/2−3) 
(2M-3) +M-3 planet modes evolve into translational modes, 
where M-3 modes come from the distinct planet modes. 
 
According to Eq. (11) and Eq. (12), for even N there is M-3 
purely ring modes. When N/2 is even, all the purely ring modes 
have an even nodal diameter component, thus they evolve into 
rotational modes.  
 
3.3 Coupled Vibration Modal Analysis  

 
For rotational modes of equally spaced planets, the deflections 
of all the planets are identical. Considering the coupled 
vibration mode characteristics, a rotational mode of equally 
spaced planets contains only nodal diameter components. 
Because N is even, all the numbers of nodal diameter 
components are even.  
 

When the star gear and planetary gear train are vibration, and 
the vibration of star gear train no rule, the inherent frequency 
of the system are single.  
 
For translational modes of equally spaced planets, the planet 
deflections for a pair of translational coupling vibration modes 
satisfy.  

i r s 1 M c r s 1 1f [ p , p , p ,..., p , p , p , p , p ,..., p ]                         (13) 
Where T

n 1 1 1 1 h hp p [ , ,u ] , p [0,0,u ],h c,r,s           . 
Case 2: According to Eq. (13), coupling vibration modes of 
equally spaced planets remain translational modes. Because 
translational modes of equally spaced planets contain the 
nodal diameter components with even N, all the ring nodal 
diameter components are odd. Thus, one can identify it as a 
translational mode for equal space planets based on the 
even/odd condition as well. 
 
In summary, for any mode of systems with equally spaced 
planets, whether the elastic ring nodal diameter components 
are even or odd determined. 
 
4. Conclusions 
 
This work analytically identifies the modal properties of 
planetary gears with equally spaced planets and sun gear. The 
discrete model represents the ring gear as an body free to 
deform radially while the remaining components are rigid. The 
elastic continuum ring model leads to an infinite-dimensional 
system. Relationships between the modal properties of 
planetary gears with equally spaced planets and sun gear are 
examined in detail. The following conclusions are obtained: 
All the modes are classified into rotational or translational 
modes with distinct natural frequencies. Closed-form 
expressions are provided for the structure of each mode type. 
A rotational mode contains only even numbered nodal 
diameter components of the elastic ring, and a translational 
mode contains only odd numbered nodal diameter 
components. The planet and purely ring modes present when 
the planets and sun gear are equally spaced is exist. 
 
For rotational modes, the translations for the ring rigid motion, 
sun, and carrier are zero. For translational modes, the rotations 
for the ring rigid motion, sun, and carrier are zero. 
 
All the planet and purely ring modes of equally spaced planets 
evolve into either rotational or translational modes. The rule 
governing this modal evolution is: any mode for equally 
spaced planets and sun gear having odd (even) nodal diameter 
components evolves into a translational (rotational) mode. 
 
5. Acknowledgment 
 
This work is supported by pre-research project in Ship 
Research Institute of China (Grant Number: MAPT 
41092013). Part of simulation works were performed on 
Dawning-TC5000 system in Supercomputing Centre, 
Shenzhen Institute of Advanced Technology, CAS, China. 
 

 

 

Paper ID: 3111501 913



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 

Volume 4 Issue 11, November 2015 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

References 
 
[1] J. Helsen, F. Vanhollenbeke, F. De Coninck, D. 

Vandepitte, W. Desmet. Insights in wind turbine drive 
train dynamics gathered by validating advanced models 
on a newly developed 13.2 MW dynamically controlled 
test-rig. Mechatronics, 21 (2011), pp. 737–752 

[2] C.-J. Bahk, R.G. Parker. Analytical solution for the 
nonlinear dynamics of planetary gears. Journal of 
Computational and Nonlinear Dynamics, 2 (2011), p. 
021007 

[3] X. Wu, R.G. Parker. Modal properties of planetary gears 
with an elastic continuum ring gear. Journal of Applied 
Mechanics, 75 (2008), pp. 1–10 

[4] R.G. Parker, X. Wu. Vibration modes of planetary gears 
with unequally spaced planets and an elastic ring gear. 
Journal of Sound and Vibration, 329 (2010), pp. 
2265–2275 

[5] Y. Guo, R.G. Parker. Purely rotational model and 
vibration modes of compound planetary gears. 
Mechanism and Machine Theory, 45 (2010), pp. 
365–377 

[6] C.G. Cooley, R.G. Parker. Unusual gyroscopic system 
eigenvalue behaviour in high-speed planetary gears. J. 
Sound Vib., 332 (2013), pp. 1820–1828 

[7] D.R. Kiracofe, R.G. Parker. Structured vibration modes 
of general compound planetary gear systems. Journal of 
Vibration and Acoustics, 129 (2007), pp. 1–16 

[8] C.G. Cooley, R.G. Parker. Vibration properties of 
high-speed planetary gears with gyroscopic effects. 
Journal of Vibration and Acoustics, 134 (2012), p. 
061014 

[9] V. Abousleiman, P. Velex, S. Becquerelle. Modeling of 
spur and helical gear planetary drives with flexible ring 
gears and planet carriers. Journal of Mechanical Design, 
129 (2007), pp. 95–106 

[10] V.K. Ambarisha, R.G. Parker. Nonlinear dynamics of 
planetary gears using analytical and finite element 
models. Journal of Sound and Vibration, 302 (2007), pp. 
577–595 

[11] A. Singh, A. Kahraman, H. Ligata. Internal gear strains 
and load sharing in planetary transmissions: model and 
experiments. Journal of Mechanical Design, 130 (2008), 
p. 072602 

[12] Y. Guo, R.G. Parker. Stiffness matrix calculation of 
rolling element bearings using a finite element/contact 
mechanics model. Mechanism and Machine Theory, 51 
(2012), pp. 32–45 

[13] C.-J. Bahk, R.G. Parker. Analytical solution for the 
nonlinear dynamics of planetary gears. Journal of 
Computational and Nonlinear Dynamics, 2 (2011), p. 
021007 

[14] M. Kang, A. Kahraman. Measurements of vibratory 
motions of gears supported by compliant shafts. 
Mechanical Systems and Signal Processing, 29 (2012), 
pp. 391–403 

[15] R.M.H. Khorasany, S.G. Hutton. The effect of 
axisymmetric nonflatness on the oscillation frequencies 
of a rotating disk. Journal of Vibration and Acoustics, 
132 (2010), p. 051012 

[16] T.E. Ericson, R.G. Parker. Planetary gear modal 
vibration experiments and correlation against 
lumped-parameter and finite element models. J. Sound 
Vib., 332 (2013), pp. 2350–2375 

[17] C.G. Cooley, R.G. Parker. Vibration properties of 
high-speed planetary gears with gyroscopic effects. 
ASME J. Vib. Acoust., 134 (2012), p. 061014 

[18] T. Eritenel, R.G. Parker. Modal properties of 
three-dimensional helical planetary gears. Journal of 
Sound and Vibration, 325 (2009), pp. 397–420 

[19] C.-J. Bahk, R.G. Parker. Analytical solution for the 
nonlinear dynamics of planetary gears. ASME J. 
Comput. Nonlinear Dyn., 6 (2011), p. 021007 

[20] X. Gu, P. Velex. A dynamic model to study the influence 
of planet position errors in planetary gears. J. Sound 
Vib., 331 (2012), pp. 4554–4574 

[21] M. Inalpolat, A. Kahraman. A dynamic model to predict 
modulation sidebands of a planetary gear set having 
manufacturing errors. J. Sound Vib., 329 (2010), pp. 
371–393 

[22] R. Dhanasekaran, P.S. Kumar, K. Santhi. Crack failure of 
planetary gearbox sun gear. Int J Recent Trends Eng 
Technol, 3 (6) (2010), pp. 12–14 

 
Author Profile 

 

Xigui Wang was born in China on May 24, 1972, I 
grew up in Harbin Institute of Technology where I 
obtained my bachelor's and master's degree. My 20 
year-plus academic career evolved at the Chinese Ship 

Power Transmission Systems Research Institute and the 
Mechatronics school (Harbin Institute of Technology) as Professor 
until now. 
 

Paper ID: 3111501 914




