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Abstract: In this work, we consider a one-dimensional problem for a half-space in the context of the L-S theory of generalized thermo 

elasticity with one relaxation time parameter. The surface of the half-space is assumed to be traction free and subjected to the effects of 

a heat source varying exponentially with time at the boundary. The main objective of this present paper is to study the above problem 

based on the LS theory with the help of Homotopy analysis method proposed by S.J. Liao (1992). See the Appendix for details. The 

inversion of the Laplace transform solutions are carried out numerically using Bellman method (Bellman et al., 1966) and the obtained 

results are presented graphically. The effects of the heat source varying with time and zero traction force are studied on temperature, 

stress and displacement. Also we see the numerical result with the help of graph. 
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1. Introduction 
 
The theories were proposed by Lord and Shulman (1967) 
(LS model), Green and Lindsay (1972) (GL model) and 
Green and Naghdi (1991; 1992; 1993) (GN models) based on 
“second sound” effects, i.e., propagation of heat as a wave 
like phenomenon. 
 
In 1967, Lord and Shulman attempt to eliminate the paradox 
of infinite velocity of thermal disturbances inherent in the 
CTE. This model is based on a modified Fourier’s law but in 
addition a single relaxation time was considered. This theory 
was extended by Dhaliwal and Sherief (1980a) to include the 
anisotropic case. The uniqueness of the solution for this 
theory was proved under different conditions by Ignaczak 
(1979; 1982), by Dhaliwal and Sherief (1980b) and by 
Sherief (1987). In the L-S model, finite speed of thermal 
disturbance has been considered with thermal relaxation 
time. The heat conduction equation in this model is of 
hyperbolic type and is closely connected with the theories of 
second sound. 
 
Green and Lindsay (1972) also proposed a theory of 
generalized thermoelasticity with two relaxation time 
parameters and modified both the energy equation and 
constitutive equations. The GL model admits second sound 
without violating Fourier’s law. Both the theories are 
structurally different, but one can be obtained as a particular 
case of the other. Various problems related to the above 
theories have been investigated by Youssef (2006; 2009), 
Sherief and Megahed (1999), Sherief and Youssef (2004), 
Ezzat et al. (2001), Lahiri et al. (2010a; 2010b). 
 
A recent theoretical development of this subject is due to 
Green and Naghdi (1991; 1992; 1993). Providing sufficient 

basic modifications in the governing equations Green and 
Naghdi developed a new general theory of thermoelasticity 
that permits treatment of a much wider class of heat flow 
problems. They divided their theory into three parts and 
referred as types I, II and III. The linearized version of 
constitutive equations of GN I (1991) is same as the classical 
thermoelasticity theory which is based on Fourier’s law, 
whereas the linearized version of GN II (1993) theory 
permits propagation of thermal waves at finite speed. In the 
GN-II model, the internal rate of production of entropy is 
assumed to be identical to zero, i.e., there is no dissipation of 
thermal energy and this theory is referred to as 
thermoelasticity without energy dissipation theory. In 
development of the GN III (1992) model, the constitutive 
equations are derived by including a thermal displacement 
gradient in addition to a temperature gradient among the 
constitutive variables. However, this model admits 
dissipation of energy in general. 
 
Most of the thermoelasticity (generalized or coupled) 
problems have been solved by using the potential function. 
This method is not always suitable as discussed by Anwar 
and Sherief (1988) and Sherief (1993). Their discussion may 
be summarized by (I) the boundary and initial conditions for 
physical problems are directly related to the physical 
quantities under consideration and not to the potential 
function and (II) the solution of the physical problem in 
natural variables is convergent while other potential function 
representations are not convergent always. 
 
The alternatives to the potential function approach are as 
follows (I) State-Space approach: This method is essentially 
an expansion in a series in terms of the coefficient matrix of 
the field variables in ascending powers and applying Caley-
Hamilton theorem, which requires extensive algebra, and (II) 
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Eigenvalue approach: This method reduces the problem on 
vector-matrix differential equation to an algebraic eigenvalue 
problems and the solutions for the field variables are 
achieved by determining the eigenvalues and the 
corresponding eigenvectors of the coefficient matrix. In the 
eigenvalue approach the physical quantities are directly 
involved in the formulating of the problem and as such the 
boundary and initial conditions can be applied directly. Body 
forces and/or heat sources are also accommodated in both the 
theories, cf. Das et al. (1997; 2009), Lahiri et al. (2010), Kar 
and Lahiri (2004) and Sarkar and Lahiri (2012). 
 
Saleh (2005), Youssef (2006; 2009) studied some one-
dimensional problems in thermoelasticity (generalized or 
coupled) including heat sources by the state space approach 
and generally in their models, heat sources included the 
Dirac delta function and Heavisides unit step function and 
consequently they obtained solutions easily by the state-
space approach, but here we are interested in considering the 
heat source in any form and solve by the eigenvalue 

approach developed in Sarkar and Lahiri (2012). 
 
In this work, we consider a one-dimensional problem for a 
half-space in the context of the L-S theory of generalized 
thermoelasticity with one relaxation time parameter. The 
surface of the half-space is assumed to be traction free and 
subjected to the effects of a heat source varying exponentially 
with time at the boundary. The main objective of this present 
paper is to study the above problem based on the LS theory 
with the help of Homotopy analysis method proposed by S.J. 
Liao (1992). See the Appendix for details. The inversion of 
the Laplace transform solutions are carried out numerically 
using Bellman method (Bellman et al., 1966) and the 
obtained results are presented graphically. The effects of the 
heat source varying with time and zero traction force are 
studied on temperature, stress and displacement. Also we see 
the numerical result with the help of graph. 
 
2. Governing Equations 
 
For a homogeneous, isotropic elastic solid, the basic 
equations for the linear generalized theory of thermoelasticity 
with one relaxation time parameter proposed by Lord and 
Shulman (1967) in the absence of body forces are: 
 
(I) Equation of motion 
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(II) Heat conduction equation 
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(III) Stress–displacement–temperature relations 
 02ij ij kk ij ije e T T          (2.3) 

where i, j=1,2,3 refer to general coordinates. 
 

3. Formulation of the Problem 
 

We consider a homogeneous isotropic and thermoelastic 
half-space which fills the region subjected to a heat source 

varying exponentially with time on the boundary plane and 
the surface 0x  is assume to be traction free. The governing 
equation will be written in the context of the theory of 
thermoelasticity with one relaxation time parameter (LS 
model), when the body has no body forces. Clearly, this is a 
one dimensional problem and all the state functions depend 
only on the space variable x and time variable t. The 
displacement component of this case are of the form  
  ,0,0        0i y zu u u u    
We will use the Cartesian co-ordinates and the components 
of displacements  ,0,0iu u  and write them as follows  
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To transform the above equations in non-dimensional forms, 
we define the following non-dimensional variables  
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Equations (3.1)-(3.3) then reduce to the following non-
dimensional forms (the primes are dropped for convenience) 
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Solution using the Homotopy perturbation method: 

 
From (4) and (6), we get, 

2 2 2
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Using equation (5) and (6), we get, 
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Where, 1 2a a  . 
Equations (7) and (8) represents the second order coupled 
thermoelastic equations in temperature   and stress xx . 
Let us assume boundary conditions as follows,  
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According to HPM, we construct the following simple 
homotopies: 
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Where  0,1p is an embedding parameter, we use it to 
expand the solution in the following form: 

   0 1 2 2, ...xx xx xx xxx t p p                  (12) 

   0 1 2 2 3 3, ...x t p p p                 (13) 

Where, in i
xx  , i denotes superscript notation not power. 

The approximate solution can be obtained by setting 1p   
in equation (12) and (13).  
 
Now, substituting  ,xx x t  and  ,x t  from (12), (13) to 
(10), (11) respectively, and equating the terms with identical 
powers of p, we can obtained series of linear equations. 
These linear equations are easy to solve by using 
Mathematica software to get as many equations as we need in 
the calculation of the numerical as well as explicit solutions. 
Here we write only the first few linear equations : 
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The solution of equation (14) can be calculated by using the 
boundary conditions (9): 
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Then, we can derive the solution of (15) in the following 
form, 
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Similarly, 
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Therefore the complete approximate solution can be readily 
obtained by the same iterated process using the Mathematica 
package. 
 

Truncate the series solution obtained by HPM: 

     
3

0
2 4 6

1 2 3

, , ,

             
2! 4! 6!

i
xx xx xx

i

t

x t x t x t

x x x
m m m e

  





 

 
   
  



           (24) 

     
3

0
2 4 6

1 2 3

, , ,

          [1 ]
2! 4! 6!

i

i

t

x t x t x t

x x x
n n n e

  





 

   



         (25) 

From equation (6), we find that 
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Now, integrating above equation with respect to x, we get 
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4. Numerical Results 
 
In this section, we illustrate the problem with numerical 
values of the field variables like displacement, temperature 
and stress for a material in space-time domain. Therefore, 
with the help of Mathematica software, we compute values of 
the variables by using solutions obtained in (24)-(26) and 
employing the numerical method. We choose the copper 
material for this purpose and physical data for it are given as 
follows: 
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Figure 1: Variation of temperature, T vs. x at t=0.2. 

 
Figure 2: Variation of Stress, xx  vs. x at t=0.2. 

 
Figure 3: Variation of displacement, u vs. x at t=0.2. 

 
Figs. (1, 2, 3) shows the variation of temperature, stress and 
displacement with respect to distance, x under 

thermoelasticity LS model at time t=0.2. Fig. 1 indicates that 
when the boundary of the half space is subjected to a heat 
source varying exponentially with time and zero stress, the 
temperature decreases gradually and finally gets zero value 
after travelling a distance. Fig. 2 shows that stress increases 
with space variable x. Finally fig. 3 shows that displacement 
increases almost linearly with x. 
 
References 
 

[1] H.W. Lord, Y. Shulman, A Generalized Dynamical 
Theory of Thermoelasticity, J. Mech. Phys. Solids, vol. 
15, pp. 299-309, 1967. 

[2] A.E Green, K.A. Lindasy, Thermoelasticity, J. Elasticity, 
vol. 2, pp. 1-7, 1972. 

[3] A.E Green, P.M. Naghdi, A Re-Examination of the Base 
Postulates of Thermoemechanics, Proc. Roy. Soc. 

London A, vol. 432, pp. 171-194, 1991. 
[4] A.E Green, P.M. Naghdi, On Undamped Heat Waves in 

an Elastic Solid, J. Theorem. Stress, vol. 15, pp. 253-
264, 1992.  

[5] A.E Green, P.M Naghdi, Thermoelasticity Without 
Energy Dissipation, J. Elasticity, vol. 31, pp. 189-209, 
1993. 

[6] A.E Green, P.M Naghdi, Thermoelasticity Without 
Energy Dissipation, J. Elasticity, vol. 31, pp. 189-209, 
1993. 

[7] S. K. Roy Choudhuri, On a Thermoelastic Three-Phase-
Lag Model, J. Thermal Stresses, vol. 30, pp. 231-238, 
2007. 

[8] R. Kumar and S. Mukhopadhyay, Analysis of the Effects 
of Phase-Lags on Propagation of Harmonic Plane Waves 
in Thermoelastic Media, Comp. Methods in Sci. Tech., 
vol. 16, pp. 19-28, 2010. 

[9] S. Mukhopadhyay, S. Kothari and R. Kumar, On the 
Representation of Solutions for the Theory of 
Generalized Thermoelasticity with Three Phase-Lags, 
Acta Mechanica, vol. 214, pp. 305-314, 2010. 

[10] D. S. Chandrasekharaiah and K. S. Srinath, One-
dimensional Waves in a Thermoelastic Half-Space 
Without Energy Dissipation, Int. J. Eng. Sci., vol. 34, 
no. 13, pp. 1447–1455, 1996. 

[11] D.S. Chandrasekharaiah, Hyperbolic Thermoelasticity: 
A Review of Recent Literature, Appl. Mech. Rev., vol. 
51, no. 12, pp. 705–729, 1998. 

[12]  S. J. Liao, “On the homotopy analysis method for 
nonlinear problems”, Applied Mathematics and 

Computation, vol. 147/2, pp. 499-513, 2004. 
 

Author Profile 
 

Sudhakar Yadav received the M.Sc. degrees in 
Mathematics from Indian Institute of Technology in 
2012. Currently he is an Assistant Professor in Sri 
Venkateswara College, Department of Mathematics, 
University of Delhi, Benito Juarez Road, Dhaula Kuan, 

New Delhi, 110021. 
 

Anil Kumar received the M.Sc. degrees in 
Mathematics from Indian Institute of Technology in 
2012.Currently he is a Research Scholar in IIT BHU, 
Department of Mathematics, Banaras Hindu University, 
Varanasi, 221005.  

Paper ID: SUB159269 2129




