
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 10, October 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Envision Issue Inclined of an Application Exploiting
Model-Based Integration and System Test

Automation

Kiran V. Bakka
1
, Aarti Deshpande

2

1Department of Computer Engineering, G.H.R.C.E.M, Savitribai Phule Pune University, Pune, Maharashtra, India

2Professor, Department of Computer Engineering, G.H.R.C.E.M, Savitribai Phule Pune University, Pune, Maharashtra, India

Abstract: The world's expanded reliance on programming enabled automated frameworks has elevated real worries about
programming and coding dependability furthermore, configuration. New practical approaches and apparatuses for software stability
and quality assurance are required. This paper shows an automated test era technique, called New Model-based Integration and System
Test Automation (MISTA), for implementation of programming frameworks. Given a Model-Implementation Depiction (MID)
specification, MISTA creates test code that can be executed quickly with the procedure under test. The MID specification utilizes a Petri
net to catch both control and information related prerequisites for functional testing, access control testing, or deep testing with
exhaustive models. Subsequent to producing experiments from the test model as per a given model, MISTA changes over the
experiments into executable test code by mapping model-level components into usage level develops. MISTA has executed test
generators for different test scope criteria of test models, code generators for different programming and scripting dialects, and test
execution environments, for example, Java, C, C++, C#, HTML, Selenium, Webdriver, and Robot Framework. MISTA has been
connected to the functional and exhaustive testing of different real-world programming frameworks. Our surveys have shown that
MISTA can be profoundly powerful in flaw identification.

Keywords: Functional testing, Model-based testing, Petri nets, Exhaustive testing, Configuration testing, Regression testing, Software
assurance.

1. Introduction

The World Wide Web and the Internet have drawn the
general populace into the world of computing. We purchase
stock and mutual assets, download music, view movies, get
medical guidance, book hotel rooms, sell personal items,
schedule airline flights, meet people, do our banking, take
college courses, buy groceries—we do just about anything
and everything in the virtual world of the Web [7]. Arguably,
the Web and the Internet that permits it are the most
important developments in the history of computing.

Web-based schemes and applications (WebApps) carry a
complex selection of content and functionality to a wide
populace of end-consumers [13], [14]. Web corporate is the
process used to create high-quality WebApps. Software
testing is an essential phase of software development life
cycle because of issues generated while developing. Software
testing is a standout amongst the most vital and pivotal stage
in the product improvement life cycle process, expending a
normal of 40% to 70% of programming improvement process
[2]. Programming testing is a technique, which is utilized for
evaluating the usefulness of a product program.

Today numerous product applications are composed as
automated application that keeps running in an Internet
Program. The financial importance of online application
builds the significance of controlling and enhancing its
quality. ISO 9000 gives higher customer appreciation of
quality control [6]. The quality certification of a framework
relies on automation testing that declines the test cost and
increments work productivity. Automation empowers more
test cycles because of repeatable tests and more continual test

runs. It likewise facilitates fast, efficient verification of
prerequisite changes and bug fixes, and minimizes human
misses.

Model Based Testing (MBT) focuses on just a required
segment of framework. Experiments are not yet executable
with the SUT because of two causes. To start with, tests
created from a model are regularly insufficient on the
grounds that the real parameters are not decided. For
instance, when a test model is spoken to by a state machine
or grouping chart with imperatives (e.g., prerequisites), it is
difficult to consequently focus the genuine parameters of test
arrangements so all compels along every test successions are
fulfilled [8]. Second, tests created from a model are not
specifically executable in light of the fact that displaying and
programming use distinctive dialects. Mechanized execution
of these tests regularly requires usage particular test drivers
or connectors. Model-based Integration and System Test
Automation (MISTA) catch both information and control
flows of test necessities. It converts model-level tests into
executable code.

The remaining paper is organized as follows. The section 2
includes the survey of different methodologies that were been
developed using different tactics has been discussed briefly.
The section 3 includes MISTA’s architecture. The section 4
introduces the overview of proposed system. The section 5
gives the comparative analysis of test generators for savvy
testing. The section 6 concludes the paper in brief.

Paper ID: SUB159252 2060

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 10, October 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

2. Related work

This work is motivated by the test automation problems
found from our prior research on exhaustive testing. These
papers are related to Web applications, MISTA, Model-based
testing tools, testing with Petri nets, Modelling and testing of
access control policies, Exhaustive testing, Configuration
testing, Regression testing.

A. Web applications

Various web automation testing tools which will help us to
understand the automation testing as well as the tools
available for automation testing [2]. To select the best tool
for a task various issues like ease of integration should be
considered and evaluated against the cost and performance.
Automation Software Testing saves time and cost. The main
issue about it is tool compatibility with the design and
implementation of an application.

B. MISTA

MISTA presents an automated test generation technique,
called Model-based Integration and System Test Automation
(MISTA), for integrated functional and security testing of
software systems [1]. The specification uses a high-level
Petri net for functional testing, access control testing, or
penetration testing. It is highly effective in fault detection and
supports not only various programming and scripting
languages, but also a number of test execution frameworks.
The main issue about this system is that automation of test
sequences deals with simple test models.

C. Model-based testing

A model-based way to deal with programmed era of
executable access resistor tests utilizing predicate/move nets
[11]. Part consent test models are constructed by
coordinating ultimate access resistor rules with utilitarian test
models or conventions of the related exercises (the
framework capacities) [3]. It gives arranged procedures to
building part authorization test models and backings the era
of test code in an assortment of dialects. The main issue
about it is RBAC strategy can be executed wrongly due to
several causes.

D. Petri nets

A Petri net (also known as a place/transition net or P/T net) is
one of several mathem-etical modelling languages for the
description of distributed systems [4]. The methodology
consists of four testing strategies: transition-oriented testing,
state-oriented testing, data flow-oriented testing, and
specification-oriented testing [5].

E. Modelling and testing of access control policies

It focused on the testing of role-permission assignments and
user-role assignments in RBAC, where users, roles, and
permission rules are predefined [12]. It also automatically
generates executable access control tests from the test
models. The empirical studies using three Java programs
have demonstrated that the approach is highly effective in
detecting access control defects [3].

F. Exhaustive testing

It presents certain logistical problems. For even small
programs, the number of possible logical paths can be very

large [7]. For instance, consider the 100 line suite in the
language C. After some basic data declaration, the program
contains two nested loops that execute from 1 to 20 times
each, dependent on situations specified at idea. Inside the
inner loop, four if-then-else hypotheses are required. There
are around 1014 possible tracks that may be accomplished in
this suite.

G. Configuration testing

Automation of you web application testing allows your
development team to make changes and refactor code with
more confident, they can rapidly check the application's
usefulness after each change [7]. On the other hand, really
building programmed tests for web requests can be testing on
the grounds that the client interface of your application may
change consistently [9], in light of incompatibilities in the
middle of programs and on the grounds that you more often
than not have to bolster different server or customer stages.

H. Regression testing

It is conducted when system requirements or implementation
are changed. If test cases are not completely generated, tester
needs to determine whether they have become invalid and
whether they have to be changed [5]. Using ISTA, however,
only needs to change the specification for test generation.
Consequently testing your web request is a decent approach
to guarantee that new forms of your request don't present
bugs and relapses [6].

3. Existing System

Dianxiang Xu [1] proposed a system that computerized Test
Generation Method for Software Excellence Assertion. This
system is shown in fig.

Figure 1: System Architecture of MISTA

The important phases of this system are:
 The input to MISTA is called a Model-Implementation

Description (MID).
 The test model represented by a PrT net can be a functional

model, an access control model, a threat model, cost
effective testing model or symbolic methods model.

 MIM maps the elements of the test model to the target
implementation-level constructs.

 MISTA generates executable test code.
The main drawback of this existing system is that automation
of test sequences deals with simple test models. Thus, a new
system is needed.

Paper ID: SUB159252 2061

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 10, October 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

4. Proposed Work

The major intend of this paper is to automated test era
strategy for applications that give software quality
confirmation and it will be very successful for fault detection.
We have proposed a strategy New Model-based Integration
and System Test Automation (MISTA) which will coordinate
functional testing of programming frameworks. Given a
Model-Implementation Description (MID) specification that
contains test model which can be a functional model, an
entrance control model or exhaustive model and Model-
Implementation Mapping which will be in responsibility of
mapping components of test model to target execution level
develops. MISTA creates executable test code in target
language(for example, Java, C#, C, C++, HTML and VB)
and number of test execution systems, (for example, JUnit,
Robotium, Selenium, WebDriver, JSON-RPC, Robot
Framework) as indicated by a scope basis of the test model,
(for example, reachability scope, state scope, transition
scope, profundity scope, and objective scope).

The proposed plan produces tests for reachability scope with
robustness tests (power tests). The most critical component
of this plan is that both substantial ways and invalid ways are
tried. This strategy perform near investigation of test
generators on the premise of different parameters like fault
identification ability, time execution and adaptability of test
generators results into savvy testing and create a dynamic
reachability graph which manages more mind boggling test
models. This system is shown in fig.

Figure 2: System Architecture of New MISTA

5. Comparative Analysis of Test Generators

Analysis standards are a widespread resource in the direction
of measure the flaw recognition ability of test suites and to

bullock test suite generation [10]. Their definitions are,
however, often unclear and informal. It is very hard to even
find a definition of what scope actually are. Following are the
various scopes.

TS = Test Sequence, V = Vertex, TG = Test Goal, T =
Transition, T1/T2 = Transitions, Var = Variable, C =
Configuration, AC = Atomic Condition, S = Scenario.

 State scope if state is visited by at least one test sequence.
V є TS

 Transition scope if transition is traversed by at least one

test sequence.
TG = V (TS)
T є TS

 Transition-Pair scope if pair of adjacent transition is

traversed by at least one test sequence.
TG = T (TS)
T1/T2 є TS

 Reachability scope if each edge is visited by at least one

test sequence.
Var є TS
T

 Path scope if possible path is traversed by at least one test

sequence.
TG = C (TS)
List T
get Path (C, T)

 Profundity scope if all sequences whose lengths are less

than or equal to a given depth are covered.
T є TS
AC є T

 Scenario scope is sequence of transitions in application.
TG = TS (T)

 Objective scope if each reachable goal by at least one test

sequence
TG = TS (S)

If the test generator will satisfy the above condition of scope
then it is belonging to that scope. From above scopes
following comparisons is made from which time and cost
analysis will be found.

Var

Paper ID: SUB159252 2062

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 10, October 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Table: Comparative analysis of test generators for savvy testing

6. Conclusion

The current paper reports our a method for automation of test
activities exploiting reachability graph with more complex
test models and envision fault inclined to an application
exploiting New Model-based Integration and System Test
Automation (MISTA). It additionally bolsters various
programming dialects (e.g., Java, C#, C++, VB) and test
execution systems (e.g., JUnit, Selenium, Webdriver and
Robot Framework). Because of the system's extensible
structural planning, it is anything but difficult to present
another test generator, target dialect, or test execution
environment. The approaches we propose address the
impacts on testing coverage and productivity and reduce cost
and time of testing.

7. Acknowledgment

We would like to thanks all the authors of different research
credentialsdiscussedin writing this paper. It was very
knowledge achievement and cooperative for the
advanceexploration to be done in future.

References

[1] Dianxiang Xu, Senior Member, IEEE, WeifengXu,
Senior Member, IEEE, Michael Kent, Lijo Thomas, and
Linzhang Wang,‖ An Automated Test Generation
Technique for Software Quality Assurance‖, IEEE
TRANSACTIONS ON RELIABILITY, VOL. 64, NO.
1, MARCH 2015.

[2] Monika Sharma, RigzinAngmo,‖ Web based
Automation Testing and Tools‖, (IJCSIT) International
Journal of Computer Science and Information
Technologies, Vol. 5 (1), 2014.

[3] Dianxiang Xu, Senior Member, IEEE, Michael Kent,
Lijo Thomas, TejeddineMouelhi, and Yves Le Traon,
―Automated Model-Based Testing of Role-Based Access
Control Using Predicate/Transition Nets‖, IEEE
TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 9,
SEPTEMBER 2015.

[4] Zhu and X. He, ―A methodology for testing high-level
Petri nets‖, Inf. Softw. Technol., vol. 44, pp. 473–489,
2002.

[5] Dianxiang Xu ,―A Tool for Automated Test Code
Generation from High-Level Petri Nets’, PETRI NETS
2011, LNCS 6709, pp. 308–317, 2011.© Springer-
Verlag Berlin Heidelberg 2011.

[6] [Book]. Available: Ron Patton, ―Software Testing‖.
[7] [Book]. Available: Roger S. Pressman, ―Software

Engineering‖.
[8] Xu, D., Xu, W., Wong, W.E., ―Automated Test Code

Generation from Class State Models‖, International J. of
Software Engineering and Knowledge Engineering
19(4), 599–623, 2009.

[9] Desel, A. Oberweis, T. Zimmer, and G. Zimmermann,
―Validation of information system models: Petri nets and
test case generation,‖ Proc. SMC'97, pp. 3401–3406,
1997.

[10] L. Gallagher and J. Offutt, ―Test sequence generation for
integrationtesting of component software,‖ Comput. J.,
Advance Access, Nov.2007.

[11] Pretschner, Y. L. Traon, and T. Mouelhi, ―Model-based
tests for access control policies,‖ in Proc. 1st Int. Conf.
Software Testing Verification and Validation (ICST'08),
Lillehamer, Norway, Apr. 2008.

[12] H. Hu and G. Ahn, ―Enabling verification and
conformance testing for access control model,‖ in Proc.
13th ACM Symp. Access Control Models and
Technologies, 2008, pp. 195–204.

[13] [Online].Available:http://www.magentocommerce.com
[14] [Online]. Available: http://www.zen-cart.com

Paper ID: SUB159252 2063

http://www.magentocommerce.com/

