
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 10, October 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Chord4TSD: A Decentralized Trust Based Service
Discovery Approach on Peer-to-Peer Networks

Yogini Bhamare

Abstract: Service-Oriented Computing (SOC) is emerging as a standard for developing distributed applications and having reliable,

scalable and robust service discovery mechanism is a critical issue of utilizing SOC. In traditional service discovery methods for large

scalable service networks, centralized registries are being used which can suffer from problems like performance bottleneck and

vulnerability to failures. To overcome these problems, this paper proposes a peer-to-peer-based decentralized trust based service

discovery approach named Chord4TSD. Existing decentralized service discovery approaches may also suffer from problems like data

loss because of node failure and access of malicious services. Proposed Chord4TSD distributes and discovers trusted services in a

decentralized manner by utilizing the data distribution and lookup capabilities of Chord4S. Functionally equivalent services are

published to different successor nodes, to improve data availability, that are organized into virtual segments in the Chord4TSD.

Chord4TSD supports QoS-aware trusted service discovery, based on the service publication approach. Service discovery with

wildcard(s) and efficient discovery of multiple services with a single query is also supported in Chord4TSD. It considers trust factor for

node and service, before fetching the service from particular node, to avoid accessing malicious services from the network. In addition,

the Chord4TSD routing protocol is extended to provide WSDL file to the service consumer, which is generated at the time of service

publication based on the service description provided.

Keywords: Chord4S, DHT, Peer-to-Peer (P2P), SOC

1. Introduction

Service-Oriented Computing (SOC) is emerging as a
standard for developing distributed applications, but having
reliable, scalable and robust service discovery mechanism is
critical issues of utilizing SOC. Traditional service discovery
approaches for the web services technology are based on
Universal Description, Discovery, and Integration (UDDI)
[5]. In traditional service discovery methods for large
scalable service networks, centralized registries are being
used which can suffer from problems such as performance
bottleneck and vulnerability to failures because of a large
number of service consumers and requests in an open SOC
environment. Due to these disadvantages, applying web
services in large scalable environment is mostly prevented. In
the distributed SOC environment, to address above issue and
to achieve service discovery in scalable, reliable and robust
manner, decentralized approach seems to the most efficient
way. The Peer-to-Peer (P2P) technology eliminates
centralized infrastructures to provide a universal approach
for improving scalability, robustness and reliability of
distributed systems. In the areas such as file sharing, Voice
over Internet Protocol (VoIP) and video streaming, P2P has
achieved great success [8]. To leverage P2P computing and
web services for improved service discovery approach,
continuous research is going on in the field of SOC.

In Peer-to-Peer approach, set of distributed nodes are present
which forms the P2P network. When a provider registers the
new service, it is stored into the repository after assigning it
to the relative service node. The consumer can submit service
query to any of the nodes of the network and if that node
doesn‟t contain the required service description then query is
routed to the respective node. Description of the matched
query is then retrieved from that node and returned to the
service consumer as a query result. This is the overall idea
about how exactly service request is exactly processed in P2P
based decentralized service discovery approach. To

implement such a service discovery approach, Chord-based
and DHT based approaches are studied by different
researchers.

By making use of Distributed Hash Table (DHT), even data
distribution to nodes and efficient query routing can be
achieved in structured P2P systems. But in DHT based
systems, functionally equivalent service descriptions are
distributed on the same successor node because hashing
value is similar for all these nodes. If such a node fails, then
any of these services will not be available to the consumer
and hence DHT based P2P approaches to decentralized (P2P
based) service discovery may not be that efficient in terms of
service availability. This disadvantage can result in serious
problems in open and dynamic SOC environments in which
unexpected failure of nodes cannot be avoided [8]. In Chord-
based approach, Chord is used to facilitate decentralized web
service discovery [3]. Emekc i̧ et al. [3] present a P2P
framework based on Chord for web service discovery which
uses finite automata to represent web services. But such
approaches are also vulnerable to the issue of data
availability in open and volatile SOC environments.
Descriptions of multiple functionally equivalent services
would be stored at the same successor nodes and it may lead
to severe data loss in case of such node failures.

This paper proposes Chord4TSD, a Chord-based
decentralized trust based service discovery approach that
supports service description, distribution and discovery in a
Peer to Peer manner. The main purpose of designing the
Chord4TSD is to support trustworthy service discovery as
trust is one of the most important factors in decision making
by a service consumer, requiring the analysis and evaluation
of the trustworthiness [13] of a service provider. It considers
trust factor for the node as well as service, before fetching the
service from particular node, to avoid accessing malicious
service in a network. Chord4TSD largely improves the
availability of service descriptions, by distributing

Paper ID: SUB159214 1977

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 10, October 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

descriptions of functionally equivalent services to different
successor nodes, in volatile environments. In case if one node
fails, then a service consumer can still find functionally
equivalent services that are stored at other successor nodes. It
supports service discovery with wildcard(s) and QoS
awareness. Going forward, Chord4TSD extends Chord‟s
original routing protocol for supporting discovery of multiple
functionally equivalent services to different successor nodes
with a single query which is necessary for selection of
optimal service providers [12]. Also it generates and
provides corresponding WSDL file to service consumer so
that it can be used further as per the requirements.

2. Literature Survey

2.1 Study of Centralized Service Discovery Approaches

The centralized client/server model has been opted for
service discovery in SOC [7]. These traditional service
discovery approaches of web services technology are based
on Universal Description, Discovery, and Integration (UDDI)
[5]. As explained in [5], the focus of Universal Description,
Discovery & Integration (UDDI) is the definition of a set of
services which supports the description and discovery of (1)
organizations, businesses and other Web services providers,
(2) Web services which they make available, and (3)
technical interfaces which may be used to access those
services. Extension for a query federation of UDDI [11]
registries within a Web Service environment is presented in
[10] by Rompothong and Senivongse. But the main limitation
here is authors did not provide any experimental evaluation
for this. Wu et al. [2] describe an interoperable model of
distributed UDDI. The model divides UDDI servers into
three types: normal server, super domain server and root
server. Here philosophy of Domain Name System (DNS) is
adopted. Super domain servers, which are managed by a root
server, are used to maintain normal servers. This model is
exposed to the same threats that DNS faces, e.g., Distributed
Denial of Service (DDoS) attack, as it is based on a concept
of DNS.

2.2 Study of Peer-To-Peer-based Decentralized Service

Discovery Approaches

Decentralized service discovery approach is considered as a
promising approach to address the problems caused by
centralized infrastructures. Some preliminary research has
been already conducted for utilizing P2P computing for
service discovery. In [4], a multicast discovery protocol, the
Web Services Dynamic Discovery (WS-Discovery), for
locating services on a local network is developed by Canon,
Intel, Microsoft, BEP Systems, and WebMethods. In the WS
-Discovery protocol, request is sent to the respective
multicast group by a client to locate a target service. To scale
to a large number of endpoints, protocols define the multicast
suppression behavior when a discovery proxy is available on
the network and can be switched on. Need for polling is
minimized for the target [7] services that wish to be
discovered by sending an announcement when they join and
leave network. WS-Discovery is becoming popular and is
already being used by some software vendors, such as the

“People Near Me” contact location system in Microsoft‟s
Windows Vista operating system [8]. But WS-Discovery is
specific for ad hoc networks and still there is no any
successful experience in applying WS-Discovery in large-
scale SOC environments. Sapkota et al. [6] propose
distributed web service discovery architecture. This is based
on distributed shared space concept and intelligent search
among a subset of spaces. Web service descriptions‟
publishing as well as for submitting requests to discover the
Web service of user‟s interests is allowed. Integration of
applications which are running on different [7] resource
specific devices is supported as well. But in its current
implementation, the shared space is still centralized and no
experimental evaluation has been provided to evaluate the
proposed architecture [8]. In [9], Hu and Seneviratne propose
the approach which is based on a concept that service
providers themselves should take responsibility to maintain
their own service descriptions in a decentralized
environment. For grouping peer nodes by service categories
to form the islands on Chord ring, decentralized service
directory infrastructure [7] is built with hashing descriptive
strings into the identifiers. To handle the routing across
islands and within the islands[7], Island Table and Native
Table are created on every peer node respectively.

Schmidt and Parashar in [1] describe a system that supports
complex queries containing keywords, partial keywords and
wildcards by implementing an Internet-scale DHT. The
system assures that all the existing data elements matching a
query will be returned in terms of count of number of
messages and number of nodes involved. To map the
multidimensional information space to physical peers
effectively, key innovation scheme, a dimension reducing
indexing scheme is used. It provides Chord having the ability
to perform metric-based similarity search. Node failures
would be leading to severe data loss when above approaches
in [3] and [1] are adopted to provide service discovery
because the descriptions of the functionally equivalent
services would be stored at the same successor nodes.
Detailed literature survey for this study has been published in
[7].

The research reported in this paper is similar to the work
presented in [8], i.e. Chord4S, using layered service
identifiers to control the distribution of service descriptions.
However, this research addresses the important issue of
trustworthy service discovery in opened volatile SOC
environments. Hence, along with efficient QoS-aware service
discovery and service discovery with wildcard(s), below
points are also covered in the proposed approach.
 Service discovery as per service consumer defined trust

threshold. Trust for nodes and rating for each service is
considered

 WSDL file is generated by the system based on service
description provided and fetched at the time of service
discovery

 Check for specific Boolean attribute „Available‟. When it
is set as False, service should not be available in network

 No simulation used
3. Proposed System

Paper ID: SUB159214 1978

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 10, October 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

This research addresses the issue of trustworthy service
discovery in opened volatile SOC environments without
losing data availability in open and volatile SOC
environments. It supports efficient QoS-aware service
discovery and service discovery with wildcard(s).

3.1 Service Description

There are four main parts of service description supported by
Chord4TSD, i.e. service identifier, QoS specification, Trust
Threshold and syntax specification. This paper only focuses
on the first three parts, i.e., service identifier, QoS
specification and trust threshold. The syntax specification
describes the syntax (names and data types of the input and
output parameters) of the service. It is not addressed here as
it is usually used during the invocation of a service which is
not in scope of this paper.

Service Identifiers: Distribution and query for hierarchical
service description is supported by Chord4TSD, e.g.,
“Booking. Flight. France. AirFrance”. The number and the
order of the layers are application specific and can be
determined by the designers of the applications. Considering
this hierarchical service description, a service identifier in
Chord4TSD is divided into two parts, i.e. function bits and
provider bits. Function bits are used to refer the functionality
of the service whereas provider bits are used to describe
information about the provider of that particular service.
Service identifier is generated by hashing the service
description in which Chord4TSDallocates some bits of the
service identifier for the function description and remaining
for the provider bits. The sample service identifier is shown
in Figure. 1. Functional service matchmaking in service
discovery is done using function bits. The main purpose of
maintaining provider bits is to distinguish the functionally
equivalent services and distribute them accordingly. Service
descriptions and provider information is hashed using
CRC32 to further generate the service identifier. In
Chord4TSD, the identifiers are organized in an ascending
order in a circle. By this way, descriptions of the functionally
equivalent services will be distributed to successor nodes
adjacent to each other within a certain virtual segment of the
identifier circle. Globally, a Chord4TSD circle is composed
of a number of virtual segments and each of these contains
service identifiers from a group of functionally equivalent
services.

Chord4TSD also allows service descriptions in mixed
structures. e.g., there is an application with a maximum of
five layers, i.e. four layers for functional bits and fifth layer
for provider bits, a service description like “Booking. Flight.
France” which is 4 layers (3+1) only is also acceptable. To
generate a service identifier for this type of service
description, service identifier for the first three layers will be
generated by using hashing. i.e. hashm1 (“Booking”),
hashm2 (“Flight”), and hashm3 (“France”). The fourth layer
would be zero by default. In this scenario, the service
description will be placed in a virtual segment containing all
the service descriptions starting with “Booking. Flight.” A
simplified Chord4TSD circle is shown in Figure. 2 to present
the specific situation.

QoS Specification: Service consumers usually have specific
Quality of Specification requirements and hence service
discovery approaches should take it into consideration. The
services that cannot meet service consumer‟s QoS
requirements should be filtered out by QoS-aware service

Figure 1: Service identifier generated from hierarchical

service description

discovery and only return the ones that can. In Chord4TSD,
service providers are allowed to publish their services with
quality specifications attached as advertisements. After
finding matched the service description of functional
requirements, the service consumer can then look over the
attached quality specification. Following two types of QoS
attributes are supported by Chord4TSD,
 Numeric QoS attributes: A QoS attributes that can be

assigned with any value selected from a numeric interval is
nothing but the numeric QoS attribute. QoS attributes such
as price, execution time, availability, etc. fall into this
category. Comparison operators, e.g., <;<=;>;>=etc., are
used to specify service consumer‟s QoS requirements of
this type, such as “Price < =$1:000:00”.

 Boolean QoS attributes: A QoS attributes that can be
assigned to one of the two values: true and false is nothing
but the Boolean QoS attribute. For example, a hotel
booking service may have a QoS attribute such as
Cancellable that can be assigned with either true or false
specifying that the booking can or cannot be cancelled.
Two comparison operators, ==and! = can be used to
specify QoS requirements of this type, such as “Cancellable
= = True.”Also, there is a specific check provided for
„Available‟ attribute. When it is set to False, that service
will not be available in network, Service can only be
consumed, when it has „Available‟ attribute value as True.

Individual QoS requirements can be combined using logical
connectives, when a service consumer has requirements of
multiple QoS attributes.

Trust Threshold: Service consumers always want to fetch
services from trusted nodes to get rid of malicious services
available in the network. The services that are having trust
factor below service consumers required trust threshold
should be filtered out in this trustworthy service discovery.

Paper ID: SUB159214 1979

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 10, October 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

To achieve this, trust factor for each node (trust of Other
Connected Nodes to Trust on current node) is set when
network is created. Initial node trust is set to 1 for all the
nodes in the network. Later when service is accessed from
any perticular node, that node‟s trust value is increased by 1.
This value is increased upto 10 and once this value reaches to
10, it is kept as 10 for that node. Along with the node trust,
service trust is also considered here. While publishing any
service in a network, 3 nearest nodes are selected from the
network and rating for the service to be published is taken
from those selected nodes and set for that service. At the time
of service discovery, trust for a service is calculated by
considering data of trust for service and corresponding nodes
(from 3 different nodes). This calculation is done as given
below:

Let‟s consider,
 p1;p2;...pi;...;pl;...;pn be the nodes in a network.
 S be the service available on nodes from different

providers.
 Tp1p2 is the trust of node p1 on node p2; Tp1p3 is trust of

node p1 on node p3; and so on….
 The rating of node p2 about service S is Rp2S; rating of

node p3 about service S is Rp3S; and so on…

Trust for a Service S for node p1 is calculated as,

At the time of service discovery, after finding matched
service description of functional requirements and attached
quality specification, search is processed further with respect
to trust threshold defined by service consumer. If calculated
trust is greater than defined threshold, and then it will be
countable other wise move forward to discover other service
which service follows the constraint.

3.2 Service Publication

Data availability is improved in Chord4TSDby distributing
descriptions of functionally equivalent services to different
nodes. By this way, a failed node would just have limited
impact on data availability and a service consumer has
chance to locate the functionally equivalent services from
other available nodes.

Figure 2: Virtual segments for “Booking. Flight” and

“Booking.Flight.France.”

To guarantee such data availability of Chord4TSD based
systems, few design specification needs to be taken into
consideration like Chord4S [8]. Consider, N = network
consisting of N nodes, l = length of service identifier, P =
maximum number of functionally equivalent services and x
= length of provider bits and this x should be carefully
calculated to achieve even service description distribution.
A smallest virtual segment should be capable of
accommodating all the functionally equivalent services, as
constraint (1) given below.

 (1)
Hence,
 (2)

If n nodes are distributed on the Chord4TSD circle then

they are distributed with as the average distance between
each other. Hence in a smallest virtual segment, to
accommodate P functionally equivalent services, the
capability of the virtual segment is supposed to

be . Then to allocate enough bits for provider
bits, constraint (3) given below should be satisfied.

 (3)
Hence,

 (4)
With constraints (2) and (4) satisfied, the descriptions of
functionally equivalent services can be evenly distributed,
in a virtual segment, which means that all of them are
distributed to different successor nodes.

Also, WSDL file is generated from Service name and
service descriptions and stored along with other service
details in Chord4TSD. Service name provided while
registering the service is taken as Service and descriptions
are taken as methods in WSDL file. At the time of Service
discovery, WSDL file will also be fetched along with the
other service details so that service consumer can
use/enhance it further as per the requirements.

Following strategy is followed while implementing above
described service publication approach:
a) To assign provider bits, total number of nodes in network

is considered. If number of nodes in network are N, then
the length for provide bits is set as,
 => Provider Length = 2 digit,
 => Provider Length = 3digit and so

b) To Publish the Service, when similar service is not
already exists in a network, calculate publisher node as
per the details given in Table 1.

c) When another equivalent service is created next time,
comparisons of service identifiers are done.
 If Service Identifier for new service is greater than

existing service, then new service would be published
on successor node

 If Service Identifier for new service is less than
existing service, then new service would be published
on predecessor node

 If it is between two service identifier then service is
published to previous highest service identifier node

Paper ID: SUB159214 1980

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 10, October 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Table 1: Publisher Node calculation

d) To restrict virtual segment length, minimum and
maximum boundary is defined by using following
constraints:





3.3 Service Discovery

This section gives details of how routing of query messages
is performed in Chord4TSD based on the service publication
approach described in the above section.

Chord4TSD supports 2 types of queries, i.e. Service specific
queries and wildcard queries. Complete details of a service
description are present in a service-specific query and it is
used to look up a specific service. In a system which allows
four-layered function bits in the service descriptions, is a
typical example of service-specific query is “Booking. Flight.
France. AirFrance”. To compose the query with explicit
service information, the service consumer needs to fill in all
the layers to initiate a service-specific query. Then each of
those layers will be hashed and the results will be connected
to generate the function bits of the target service identifier.
The provider bits of the query will be stuffed with 0s as the
objective here is to look up a group of functionally
equivalent services provided by different service providers.

Sometimes service consumers need to search for categories
of services. In such cases, service queries using wildcard(s)
are necessary, e.g., “Booking.India.Flight.*”, “Booking.
India.Raliway.*”, and “Booking.India.*.*”. To solve a query
with wildcard(s), it actually looks up a virtual segment
composed by nodes succeeding service descriptions which
fall into the target service category. The generation of the
target service identifier for a query with wildcard(s) is similar
to that for a service-specific query. The difference here is that
the layers corresponding to the wildcard(s) in query with
wildcard(s) will be stuffed with 0s.

Forwarding Service-Specific Queries:To find multiple
functionally equivalent services with one query in
Chord4TSD, the query must be routed across the
corresponding virtual segment of the identifier circle until
sufficient services required by the service consumer have
been found. In this research, Chord4TSDsupports further
routing of a query to other nodes when it reaches a matched
successor node.

Each initiated query message contains the following basic
information: a target service identifier and a counter. Target
service identifier includes function bits and provider bits with
the provider bits stuffed with 0‟s. For finding out if a service
matching succeeds, binary AND operation is performed by a

node between each of its succeeding service identifiers and
the target service identifier in the query. The matching
succeeds, if the result equals to the target service identifier.
This AND operation is used, Logically, to extract the
identifier of the virtual segment that the node belongs to and
to find out if this identifier equals to the function bits in the
required service identifier. Figure. 3.shows a sample of
matched service. As the result of the AND operation is equal
to the target service identifier, the service description which
is stored at that node meet the service consumer‟s
requirements. After finding out a matched service
description, a query will still be passed along the circle until
sufficient service providers are found.

Service consumers include their prespecified QoS
requirements and trust threshold (between the scales of 1 to
10) in the query messages, to request trustworthy services
with QoS constraints. The process of looking up services is
then divided into two steps: functional and nonfunctional. At
the 1st step, the query message is forwarded by nodes
following the routing protocol. Once the query message
reaches a successor node that stores a matched service
description, the service discovery proceeds to the second step
where successor node checks the entries of the QoS
requirements one by one to see if the service meets the QoS
requirements specified in the query message. If the service
meets the QoS requirements, then it proceeds with the
checking for required trust threshold. If the criteria for trust
threshold fulfilled, then the corresponding service description
is first added (by successor node) into the list of candidate
service providers in the query message and then forward the
query message (or returns the query message to the service
consumer if the discovery process completes). Else, the query
message will be simply forwarded according to the routing
protocol, when multiple occurrences of services need to be
fetched using single query. In this scenario of getting
multiple occurrences of same service, at matched node, after
meeting QoS requirements and trust threshold that
encountered matched successor nodes must perform below
three tasks:
 Get min (query. Counter, m) matched the service

description it contains with m being the number of matched
service descriptions, and add it into a query message

 Subtract the value of the counter by min (query. Counter,

m)

 Check if counter equals to 0. If yes, send a query message
back to service consumer, else route the query to a next
successor node as per the defined protocol.

Forwarding Queries with Wildcard(s): The process of
forwarding queries with wildcard(s) issimilar to that of
forwarding service-specific queries, only the bits generated
from explicit service information will be taken into
consideration, instead of all the function bits. During the

Paper ID: SUB159214 1981

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 10, October 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

process of forwarding a query with wildcard(s), because this
type of queries is used to look up services that belong to a
specified service category, all the successornodes storing
service descriptions that fall into the specifiedservice
categories are considered matched. As the result from the
AND operation equals to the target service category
identifier, the service descriptions which are stored at the
node fall into the service category required by the service
consumer. To serve for a service query with wild card(s),
since a service category corresponds to a virtual segmenting
the Chord4TSD circle, corresponding virtual segment needs
to be traversed.

Figure 3: Service matching operation for forwarding a

service-specific query

4. Results

On the basis of trust threshold some results are generated by
comparing Chord4S with trust based Chord4S (i.e.
Chord4TSD) protocol. This protocol has been implemented
in java 1.6 on windows OS. Wired/wireless connection is
created among the nodes to form a ring topology of a
network. Request Eligibility verification, Confidence of
Genuinity for node, Time taken for service discovery were
evaluated particularly because they are of great importance in
Chord4TSD, i.e. trust based service discovery. This
experimental evaluation was performed in network consisting
of 8 nodes with 5 different types of service requests in order
to evaluate the performance of Chord4TSD.

4.1 Request Eligible Services

To evaluate request eligibility criteria, 5 different types of
requests have been evaluated. After matching the service
description details, QoS parameters are matched. In proposed
work Chord4TSD, trust threshold is also needs to be
checked. As the value of trust threshold increases,
request eligible nodes will be comparatively low because of
filter of trust threshold. Hence, less no of services would be
returned as a result of service discovery. Reason is that
requirement of high trust threshold increase the level of
difficulty to find satisfactory service descriptions, and hence
results in less eligible services. Figure 4. demonstrates result
of request eligible services. Less number of services
discovered in Chord4TSD, to avail trustworthy services, is
acceptable.

4.2 Confidence of Genuinity

A unique feature, and also a main design goal of Chord4TSD
is the trusted service discovery from a network. The result
shown in Figure 5. compares confidence a node (requesting
node) can have on set of nodes and their services on which

the requested service is discovered. The confidence statistics
here not only checks for genuinity of node alone but also of
service it hosts. This statistics is used to calculate how much
requesting node can be confident about the service which is
discovered to access it in the future. E.g. suppose there are 3
nodes which host the requested services and are shortlisted
by applying the trust threshold criteria.

Now the requesting node calculates the confidence of
genuinity of a service and node on the basis of following
formula:

Confidence (%) = Average (Service Rating) * Average
(Node Trust) * 100%
Where,
Average (Service Rating) = Sum of Rating of Discovered
Services/ Number of Discovered Services
Node Trust= Sum of Trust of Nodes/ Number of Nodes (on
which service is discovered)

Result after the service was successfully discovered and after
applying the threshold trust criteria is shown in Table 2.

Table 2: Result of Average Rating and Node Trust

Node Shortlisted Service Service Rating Node Trust

Node1 booking 8 8
Node2 booking 6 10
Node3 booking 7 9
Total 21 27

Average 7 9
Confidence (%) = 7 * 9 * 100% = 63%

Hence the requesting node has at least 63% confidence while
accessing any of the services from any of the nodes
discovered of its genuinity.

For Chord4S, confidence of genuinity is calculated as,
 Value1= Confidence [Chor4TSD] (%) – 10
 Take random value in the rage from 10 to Value1

Figure 4: Request Eligible Services

Paper ID: SUB159214 1982

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 10, October 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

4.3 Time required for service discovery

To analyze time requirement for service discovery, 5
different types of requests have been evaluated. In both the
systems, after matching service discovery, QoS requirements
are matched. As the number of QoS attributes that the service
consumers have requirements are increases, the average
number of hops needed and hence overall time requirement,
to complete routing the query messages will increase
accordingly. The reason is that requirements for more QoS
attributes increase the level of difficulty to find satisfactory
service descriptions, and hence requires visiting more
successor nodes which results in more time requirement. In
addition, in Chord4TSD, some more time is required for the
calculations and comparisons done for trustworthy
service discovery. Figure. 6. demonstrates result of time
requirement for service discovery. Slightly more time is
required in Chord4TSD and it is acceptable to get rid of access
to malicious services and discover only trustworthy services.

Figure 5: Confidence of Genuinity

Figure 6: Time required for service discovery

5. Conclusion

Peer-to-peer-based service discovery becomes more efficient
and effective after the deficiencies of centralized service
discovery are identified. Proposed system Chord4TSD,
inherited from Chord4S, using layered service identifiers to
control the distribution of service descriptions and achieve
high data availability. It supports QoS-aware, trustworthy
service discovery and service discovery with wildcard(s). In

addition, this routing protocol supports efficient discovery of
multiple services with a single query. Also it generates and
provides corresponding WSDL file to service consumer so
that it can be used further as per the requirements.

Integration of semantic information of services into
Chord4TSD will also be investigated and incorporated in
WSDL file, in the future, in order to increase the flexibility
and accuracy of the service discovery.

References

[1] B. Sapkota, D. Roman, S.R. Kruk, and D. Fensel,

“Distributed Web Service Discovery Architecture,”
Proc. Advanced Int‟l Conf. Telecomm. and Int‟l Conf.
Internet and Web Applications and Services, p. 136,
2006.C. Sch

[2] C. Schmidt and M. Parashar, “A Peer-to-Peer Approach
to Web Service Discovery,” World Wide Web, vol. 7,
no. 2, pp. 211-229, 2004.

[3] F. Emekc i̧, O.D. Sahin, D. Agrawal, and A.E. Abbadi,
“A Peer-to-Peer Framework for Web Service Discovery
with

[4] J. Beatty, G. Kakivaya, D. Kemp, T. Kuehnel, B.
Lovering, B. Roe, C. St.John, J. Schlimmer, G.
Simonet, D. Walter, J. Weast, Y. Yarmosh, and P.
Yendluri, “Web Services Dynamic Discovery (WS-
Discovery)
http://specs.xmlsoap.org/ws/2005/04/discovery/ws-
discovery.pdf, 2005.

[5] L. Clement, A. Hately, C. von Riegen, and T. Rogers,
“UDDI Version 3.0.2,” OASIS,
http://www.uddi.org/pubs/uddi_v3.htm, 2004.

[6] P. Rompothong and T. Senivongse, “A Query
Federation of UDDI Registries,” Proc. First Int‟l Symp.
Information and Comm. Technologies, pp. 561-566,
2003

[7] Prof. D.N. Rewadkar, Yogini Bhamare “Different
Approaches for Peer-to-Peer Based Decentralized
Service Discovery,” International Journal of Advanced
Research in Computer Science and Software
Engineering 3(11), Volume 3, Issue 11, pp. 24-28,
2013.

[8] Qiang He, Member, IEEE, Jun Yan, Yun Yang,
RyszardKowalczyk, and Hai Jin, Senior Member, IEEE,
“A Decentralized Service Discovery Approach on Peer-
to-Peer Networks”, IEEE Transaction on Services
Computing, VOL. 6, NO. 1, JANUARY-MARCH
2013.

[9] F. Emekc i̧, O.D. Sahin, D. Agrawal, and A.E. Abbadi,
“A Peer-to-Peer Framework for Web Service Discovery
with Ranking,” Proc. IEEE Int‟l Conf. Web Services
(ICWS ‟04), pp. 192-199, 2004.

[10] T.H.-T. Hu and A. Seneviratne, “Autonomic Peer-to-
Peer Service Directory,” IEICE Trans. Information
System, vol. E88-D, no. 12, pp. 2630-2639, 2005

[11] L. Wu, Y. He, D. Wu, and J. Cui, “A Novel
Interoperable Model of Distributed UDDI,” Proc Int‟l
Conf. Networking, Architecture, and Storage (NAS
‟08), pp. 153-154, 2008.

Paper ID: SUB159214 1983

http://www.uddi.org/pubs/uddi_v3.htm

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 10, October 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[12] D. Ardagna, M. Comuzzi, E. Mussi, B. Pernici, and P.
Plebani, “PAWS: A Framework for Executing Adaptive
Web-Service Processes,” IEEE Software, vol. 24, no. 6,
pp. 39-46, Nov./Dec. 2007.

[13] Wang, Yan, Orgun, Mehmet A., Lim, Ee-Peng, Liu,
Guanfeng, “Finding the Optimal Social Trust Path for
the Selection of Trustworthy Service Providers in
Complex Social Networks,” Services Computing, IEEE
Transactions on (Volume:6 , Issue: 2), April-June
2013.

Author Profile

Yogini Bhamare received the B.E(Information
Technology) and M.E(Computer Engineering) degrees
from Pune University in 2005 and 2014, respectively.
She is now with Persistent Systems Ltd

.

Paper ID: SUB159214 1984

