Experimental and Theoretical Vibrational Spectroscopic Study of Schiff base Derived from 4-Amino Antipyrine- A Quantum Chemical Study

Kishor Arora¹, Anu Parmar²

¹Department of Chemistry, Government Autonomous Post graduate College, Datia (India)

²Govt. Kamla Raja Girls Autonomous Post Graduate College, Gwalior (India)

Abstract: In the present work Experimental IR Spectral study and theoretical study of three Schiff base organic compounds, 4-N-[Furfuralidene]aminoantipyrine(FAAPy), 4-N-[(3,4,5-Trimethoxy)benzalidene] amino antipyrine(TMBAAPy), 4-N-[Glutaralidene]aminoantipyrine (GAAPy) of 4-Aminoantipyrine has been performed by using semi-empirical methods AM1, PM3, MNDO and ZINDO1 in order to elucidate the correlation coefficient between experimental and theoretical vibration modes. The efficiency of Schiff base compounds relate to some parameters such as Total Energy (TE), Electronic Energy (EE), Core-core Interaction (CCI), Heat of Formation (HF), Highest Occupied Molecular Orbital (HOMO), Lowest Unoccupied Molecular Orbital (LUMO), Energy gap (EG), Dipole Moment (DM), Zero Point Energy (ZPE) were calculated. All calculations has been performed by considering semi-empirical methods AM1, PM3, MNDO and ZINDO1 using program HYPERCHEM 8.0 version. The calculated results are in agreement with the experimental data on the whole.

Keywords: Vibration Modes, Semi-empirical, AM1, PM3, MNDO, ZINDO1, Correlation.

1. Introduction

Schiff's bases are an important class of organic compounds [1]. They were first reported by Hugo Schiff in 1864 [2]. Schiff's bases are condensation products of primary amines with carbonyl compounds. The common structural feature of these compounds is the azomethine group with the general formula RHC = N-R1, where R and R1 are alkyl, aryl, cycloalkyl, or heterocyclic groups. Structurally, a Schiff's base (also known as imine or azomethine) is a nitrogen analogue of an aldehyde or ketone in which the carbonyl group (>C = O) is replaced by an imine or azomethine group[3-4].

In this respect we reported here the synthesis of 4-N-[Furfuralidene] amino anti pyrine(FAAPy),4-N-[(3,4,5-Trimethoxy)benzalidene]aminoantipyrine(TMBAAPy), 4-N-[Glutaralidene]aminoantipyrine (GAAPy) of 4-Aminoantipyrine and find out their experimental and theoretical spectra and some important parameters related to its efficiency.

2. Materials and Methods

All the chemicals used were of AR grade and were used with further purification where ever required. Fourier transform infrared (FTIR) spectra were registered on a Perkin Elmer Infrared Spectrophotometer in the range of 4000 to 400 cm-1 at SAIF Panjab University, Chandigarh. Melting Point of the compounds are noted by usual method in chemistry research laboratory, Department of chemistry, Govt. K.R.G. P.G. Autonomous college, Gwalior (M.P.)

Synthesis of Compounds

A mixture of 4-Aminoantipyrine (1M mol) in absolute ethanol(30ml) was slowly added to a solution of

Furfuraldehyde, 3,4,5 tri methoxybenzaldehyde and Glutaraldehyde (1.1M mol) in absolute ethanol(20 ml).The stirred reaction miture was refluxed for 12 hours. After cooling a precipitate was formed which was collected by filtration than washed with cold ethanol and recrystallized from it[5-6]. Molecular structure of the compounds are given in fig.1.

Volume 4 Issue 10, October 2015 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY

[III]

Figure 1: Molecular structure of 4-N-[Furfuralidene]aminoantipyrine(FAAPy)[C-1],4-N-[(3,4,5-Trimethoxy) benzalidene] aminoantipyrine (TMBAAPy)[C-2], 4-N-[Glutaralidene] aminoanti- pyrine (GAAPy)[C-3] of 4-Aminoantipyrine.

Computational Detail

Intel based Pentium core-2 Duo machine with configuration Intel (R) core TM 2 Duo CPU, T_{5450} @ 1.66 GHZ, 2 GB RAM, 250 GB HDD was used to run all the calculations. Semi-empirical AM1, PM3, MNDO and ZINDO1 quantum chemical calculations were carried out by the computer software HYPERCHEM 8.0 version[7-8] and calculated parameters such as frequency of Vibration modes and other parameters such as Total Energy (TE), Electronic Energy (EE), Core-core Interaction (CCI), Heat of Formation (HF), Highest Occupied Molecular Orbital (HOMO), Lowest Unoccupied Molecular Orbital (LUMO), Energy Gap(EG), Dipole Moment (DM), Zero Point Energy (ZPE).

3. Results and Discussion

The Experimental and Theoretical vibration modes for 4-N-[Furfuralidene] aminoantipyrine (FAAPy) [C-1], 4-N-[(3,4,5-Trimethoxy) benzalidene]amino antipyrine (TMBAA Py)[C-2], 4-N-[Glutaralidene]aminoantipyrine(GAAPy)[C-3] Schiff base compounds by semi-empirical methods[9-11] AM1, PM3,MNDO and ZINDO1 are given in Table-2, 3 & 4 respectively and the Experimental results are discussed in fig. 2, 3 & 4.

In case of compound 1 the correlation coefficient obtained for AM1, PM3, MNDO and ZINDO1 are 0.999863, 0.999859, 0999921 and 0.999579 respectively. It is evident that MNDO method give most satisfactory result of correlation coefficient (CC) between experimental and calculated vibration frequencies.

In case of compound 2 the correlation coefficient obtained for AM1, PM3, MNDO and ZINDO1 are 0.999958, 0.999885, 0.999966 and 0.999898 respectively. It is evident that MNDO method give most satisfactory result of correlation coefficient (CC) between experimental and calculated vibration frequencies.

In case of compound 3 the correlation coefficient obtained for AM1, PM3, MNDO and ZINDO1 are 0.999877, 0.999859, 0.999942 and 0. 999917 respectively. It is evident that MNDO method give most satisfactory result of correlation coefficient (CC) between experimental and calculated vibration frequencies.

It is evident that MNDO method give most satisfactory result of correlation coefficient (CC) between experimental and calculated vibration frequencies. Graphical correlations between experimental and calculated fundamental vibrational modes are presented in Figure-5, 6 & 7 for the above Schiff base compounds, respectively. Theoretically simulated spectra for Schiff base compounds by AM1, PM3, MNDO and ZINDO1 semi-empirical methods are given in fig. 8,9 & 10 respectively[12-13].

Parameters such as Total Energy (TE), Electronic Energy (EE), Core-core Interaction (CCI), Heat of Formation (HF), Highest Occupied Molecular Orbital (HOMO), Lowest Unoccupied Molecular Orbital (LUMO), Energy Gap(EG), Dipole Moment (DM) and Zero Point Energy (ZPE) for above Schiff base compounds are given in Table-4, 5 and 6 respectively[14-15].

4. Conclusion

AM1, PM3, MNDO and ZINDO1 semi-empirical methods tested in the presented study on Schiff base compounds. MNDO Semi-empirical method can be considered as the most appropriate quantum chemical method to facilitate the vibrational frequencies identification of such compounds, since the IR frequencies simulated by this method best linearity between the calculated and experimental data (respectively) used in 4-Nfrequencies [Furfuralidene]aminoantipyrine(FAAPy)[C-1], 4-N-[(3,4,5-Trimethoxy) benzalidene]aminoantipyrine(TMBAAPy)[C-2], 4-N-[Glutaralidene] aminoanti- pyrine (GAAPy)[C-3] Schiff base compounds. Thus, Quantum chemical Semiempirical calculation can be successfully used for the prediction of vibration modes of making more active ligands other molecules. HOMO-LUMO, Energy gap, and molecular hardness, Ionization energy, electron affinity and total energy are very important physical parameters for chemical reactivity and biological activities of the studied compounds[15-19].

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

S. No.	Experimental	AM1 Computed	PM3 Computed	MNDO Computed	ZINDO1 Computed	
	Group Frequency	Group Frequency	Group Frequency	Group Frequency	Group Frequency	Assignment
	(cm^{-1})	(cm ⁻¹)	(cm^{-1})	(cm ⁻¹)	(cm^{-1})	
1.	3421	3442	-	3421	-	v _{as} (N-H) in NH ₂
2.	3110	3159	-	-	-	v _s (N-CH ₃)
3.	3046	-	3055	-	3006	υ _s (C-H)
4.	2958	-	-	-	-	υ (C-H)
5.	2924	-	-	-	-	υ (C-H)
6.	1647	1645	1683	1649	1698	υ (C=O)
7.	1603	-	-	-	-	v(C=C)
8.	1592	1599	1582	1590	-	(NH ₂) Sci
9.	1575	1579	-	-	1544	(NH ₂) Sci
10.	1487	1473	-	1492	1479	υ (C=C)
11.	1456	-	-	1452	-	v(C=C)
12.	1444	1449	1443	1439	1423	v(C=C)
13.	1380	1368	-	1369	1384	v(N-C)
14.	1351	1344	-	-	1346	v(C-N)
15.	1331	-	1339	-	-	v(C-N)
16.	1305	1310	1318	-	1301	v(C-C)
17.	1266	1242	-	1273	1265	v(C-H)
18.	1212	1209	-	1211	1213	δ (C-H)
19.	1151	-	1154	1159	-	δ (C-H)
20.	1135	-	-	-	-	δ (C-H)
21.	1074	1072	1077	1069	-	δ (C-H)
22.	1054	-	-	-	-	δ (C-H)
23.	1014	1004	1008	1004	-	δ (C-N)
24.	951	-	-	-	-	δ (C-H)
25.	928	930	931	916	912	δ (C-H)
26.	867	868	-	866	864	δ (C-H)
27.	820	-	-	-	-	(CCC) rb
28.	760	-	766	-	758	δ (C-H)
29.	750	-	-	-	-	δ (C-H)
30.	701	705	-	705	-	δ (CCC)
31.	664	675	-	-	674	δ (C=O)
32.	628	627	627	620	628	δ (CCC)
33.	435	-	439	-	431	$\tau (NH_2)$

Table 1: Experimental and Theoretical simulated (AM1, PM3, MNDO, ZINDO1) frequency of vibration modes(cm ⁻¹) for 4	4-
N-[Furfuralidene]aminoantipyrine (FAAPy)	_

Table 2: Experimental and Theoretical Simulated (AM1, PM3, MNDO, ZINDO1) frequency of vibration modes (cm⁻¹) for 4-N-[(3,4,5-Trimethoxy)benzalidene] aminoantipyrine (TMBAAPy)

	N-[(3,4,5-11ineutoxy)benzandene] animoanupytine (11iibAAr y)						
S.No.	Experimental	AM1 Computed	PM3 Computed	MNDO Computed	ZINDO1 Computed		
	Group Frequency	Group Frequency	Group Frequency	Group Frequency	Group Frequency	Assignment	
	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})		
1.	3437	-	3392	3445	-	v_{as} (N-CH ₃)	
2.	3080	3078	3079	-	-	υ (C-H)	
3.	3014	3022	-	-	-	υ (C-H)	
4.	2994	2992	2994	-	-	υ (C-H)	
5.	2961	-	2955	-	-	υ (C-H)	
6.	2934	-	-	-	-	υ (C-H)	
7.	2834	-	-	-	2805	(=C-H) Aldehyde	
8.	2238	-	-	-	2245	v_{s} (C-NH ₂)	
9.	1649	1658	1676	1641	1649	v (C=O)	
10.	1579	1578	1587	1583	-	(NH ₂) Sci	
11.	1489	1480	-	-	1480	v(C=C)	
12.	1452	1451	1446	1450	1438	v(C=C)	
13.	1411	1402	-	1416	-	v _{as} (C-CH ₃)	
14.	1379	1381	1378	-	1383	v(N-C)	
15.	1365	1364	-	1362	1366	v(C-C)	
16.	1327	1331	1325	1325	1328	v(C-C)	
17.	1290	1288	-	1282	1295	v(C-N)	
18.	1228	1211	1225	1229	1228	δ (C-H)	
19.	1183	1188	1168	1179	1197	δ (C-H)	
20.	1069	1078	1074	1068	1082	δ (C-H)	
21.	1041	-	-	1041	-	NH ₂ Twi	
22.	1023	-	1021	-	-	δ(C-N)	
23.	1002	1004	-	1000	-	(CCC) Tri	

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

24.	952	962	970	963	955	δ (C-H)
25.	859	865	851	854	861	δ (C-H)
26.	827	821	823	-	831	(CCC) rb
27.	753	763	-	-	-	δ (C-H)
28.	730	-	736	725	734	δ (C-H)
29.	651	658	-	-	658	ω (NH ₂)
30.	630	628	626	623	628	δ (CCC)
31.	526	519	519	518	-	δ (CCC)
32.	503	504	-	510	502	δ (CNN)
33.	428	430	423	-	-	τ (NH ₂)

Table 3: Experimental and Theoretic	cal simulated (AM1, PM	A3, MNDO,	ZINDO1)	frequency of vibra	tion (cm^{-1})) for 4-N-
	[Glutaralidene]amin	oantipyrine ((GAAPy)			

S.No.	Experimental	AM1 Computed	PM3 Computed	MNDO Computed	ZINDO1 Computed	
	Group Frequency	Group Frequency	Group Frequency	Group Frequency	Group Frequency	Assignment
	(cm^{-1})	(cm ⁻¹)	(cm ⁻¹)	(cm^{-1})	(cm^{-1})	
1.	3401	-	-	3405	-	v_{as} (N-H) in NH ₂
2.	3322	3351	3385	-	-	v _s (N-CH ₃)
3.	3062	-	3062	-	-	v (C-H)
4.	2984	-	-	-	2938	v (C-H)
5.	1656	1636	-	1661	1648	v(C=O)
6.	1593	1576	1585	1586	-	(NH ₂) Sci
7.	1496	1496	-	1486	1481	v (C=C)
8.	1456	-	1456	-	1450	v (C=C)
9.	1350	1353	-	-	1349	v(C-C)
10.	1310	-	1303	1300	-	v(C-C)
11.	1294	-	-	-	1295	v (C-N)
12.	1181	1176	1173	1188	-	δ (C-H)
13.	1165	1162	1168	1166	1174	δ (C-H)
14.	1134	-	1149	-	1138	δ (C-H)
15.	1105	1105	1113	-	1108	δ (C=O)
16.	1075	1067	1071	1065	-	δ (C-H)
17.	925	932	920	-	-	δ (C-H)
18.	905	910	-	912	-	δ (C-H)
19.	836	829	846	834	-	(CCC) rb
20.	758	769	752	770	750	δ (C-H)
21.	697	-	-	686	-	δ(CCC)
22.	664	666	655	673	-	δ (C=O)
23.	645	648	646	-	647	δ(CCC)
24.	502	501	-	-	507	δ (CNN)
25.	451	-	453	450	441	δ(CCN)

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 10, October 2015 www.ijsr.net Licensed Under Creative Commons Attribution CC BY

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Figure 5: Theoretically AM1, PM3, MNDO & ZINDO1 Simulated spectra for 4-N-[Furfuralidene] aminoantipyrine (FAAPy)[C-1]

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

3351 1496 1176 1105 932 829

666 501

Figure 7: Theoretically AM1, PM3, MNDO & ZINDO1 Simulated spectra for 4-N-[Glutaralidene] aminoantipyrine (GAAPy)[C-3]

 Table 4: Computed parameters for_4-N-[Furfuralidene]

 aminoantipyrine (FAAPy)[C-1]

	AM1	PM3	MNDO	ZINDO1			
TE(K.cal./Mol)	-72369.0	-65179.5	-72476.7	-101018.8			
EE(K.cal/Mol)	-396679.3	-381962.6	-385494.7	-491035.6			
CCI(K.cal/Mol)	324310.2	316783.0	313017.9	390016.7			
HF(K.cal/Mol)	274.10	306.33	239.56	-6051.80			
HOMO(eV)	-0.051	-0.450	-0.124	-5.625			
LUMO(eV)	0.041	0.273	0.079	4.931			
EG (eV)	-0.01	-0.177	-0.045	-0.694			
DM(Debye)	9.307	4.147	4.996	5.030			
ZPE(K.cal/Mol)	111.51	111.03	115.60	156.71			

Table- 5: Computed parameters for 4-N-[(3,4,5-Trimethoxy) benzalidene]aminoanti- pyrine

(TMBAAPy)[C-2]								
	AM1	PM3	MNDO	ZINDO1				
TE(K.cal./Mol)	-105754.6	-96769.5	-106125.7	-148318.8				
EE(K.cal/Mol)	-766206.6	-749280.8	-756394.4	-885679.9				
CCI(K.cal/Mol)	660451.9	652511.3	650268.7	737361.0				
HF(K.cal/Mol)	150.79	103.29	39.326	-9533.27				
HOMO(eV)	-0.154	-0.009	-0.124	-5.560				
LUMO(eV)	0.359	0.185	0.123	4.326				
EG (eV)	0.205	0.176	-0.001	-1.234				
DM(Debye)	3.406	5.301	2.995	7.589				
ZPE (K.cal/Mol)	214.40	205.12	225.49	307.99				

 Table 6: Computed parameters for 4-N-[Glutaralidene]

 aminoantipyrine (GAAPy)[C-3]

	AM1	PM3	MNDO	ZINDO1			
TE(K.cal./Mol)	-75304.1	-67982.3	-75347.6	-105276.9			
EE(K.cal/Mol)	-440416.1	-426863.0	-422222.7	-516602.3			
CCI(K.cal/Mol)	365112.0	358880.6	346875.0	411325.35			
HF(K.cal/Mol)	296.10	239.51	318.45	-6605.96			
HOMO(eV)	-0.034	-0.212	-0.030	-5.978			
LUMO(eV)	0.208	0.012	0.135	5.129			
EG (eV)	0.174	-0.2	0.105	-0.849			
DM(Debye)	4.879	4.939	3.270	11.551			
ZPE (K.cal/Mol)	120.67	115.81	119.56	165.38			

References

- [1] Guo Z, Xing R, Liu S, Zhong Z, Ji X & Wang L, Antifungal properties of Schiff bases of chitosan, Nsubstituted chitosan and quaternized chitosan, *Carbohydra Res*, 342(10),1329–1332,(2007).
- [2] Haddad R, Yousif E & Ahmed A, Synthesis and characterization of transition metal complexes of 4amino-5-pyridyl-4H-1,2,4-triazole-3-thiol, *Springer plus*, 2,510-518, (2013).
- [3] Adnan dib., Synthesis And Characterization Of Schiff Bases Derived From Acetylacetone And Their Theoretical Study, *International Journal of Chem. Tech Research*, 5(1), 204-211, (2013).
- [4] Raafat M. Issa, Abdalla M., Khedr and Helen Rizk, ¹H NMR, IR and UV/VIS Spectroscopic Studies of Some Schiff Bases Derived From 2-Aminobenzothiazole and 2-Amino-3-hydroxypyridine, *Journal of the Chinese Chemical Society*, 57, 875-884, (2008).
- [5] Przybylski P, Huczyński A, Pyta K, Brzezinski B & Bartl F., Biological properties of Schiff bases and azo derivatives of phenols, *Curr Org Chem.*,13,124–148, (2009).
- [6] T. Daniel Thangadurai, Chiral Schiff base Ru(III) complexes: synthesis, characterization, catalytic and antibacterial studies. *Jour. Ind. Eng. Chem.*, 09, 563-568, (2003).
- [7] HyperChemTM Professional Release 8.0 for Window Molecular Modeling System, Dealer: Copyright © 2002 Hypercube, Inc (2002)
- [8] Stewart J. J. P., Lipkowinz, K. B. Boyal, D. B. (Eds.), Reviews in Computational Chemistry, V.C.H. 1-45,(1990).
- [9] Kishor Arora, D. Kumar, Kiran Burman, Sonal Agnihotri and Bhoop Singh, Vibration modes studies of 3,4,5-trimethoxy benzaldehyde, 4-hydroxy-3-methoxy benzaldehyde and 4-chloro benzaldehyde Schiff base of

2-amino pyridine- A quantum chemical study, *Oriental Journal of Chemistry*, 26(4),1361-1368,(2010).

- [10] Anu Parmar and Kishor Arora ,Vibrational Spectroscopic Studies of Schiff base compounds derived from 4-Amino Antipyrine by Quantum chemical investigations , *Res. J. Chem. Sci.*5(9),49-59,(2015).
- [11] Anu Parmar and Kishor Arora, Semi-Empirical Study of Schiff base Compounds Derived from 4-Dimethyl aminoantipyrine, *International Journal of Science and Research (IJSR)*, 4(9),1352-1357,(2015).
- [12] Wayne B. Bosma, Laurence E. Fried and Shaul Mukamel, Simulation of the intermolecular vibrational spectra of liquid water and water clusters, J. Chem. Phys. 98(6), 4413-4421,(1993).
- [13] Kumar D., Agrawal M.C., Rajeev Singh, Computational Study of Benzaldehyde Thiosemicarbazone, *Mat. Sci. Res. Ind.*, 3(1A), 37,(2006).
- [14] Bingham Richard C., Dewar M. J. S., Lo D. H., Ground state of molecules. XXV. MINDO/3, Improved version of the MINDO Semi-empirical SCF-MO method, J. Am. Chem. Soc. 97 (6),1285,(1975).
- [15] Arora K, Kumar D., Burman K, Agnihotri S, Singh B, Theoretical studies of 2-nitrobenzaldehyde and furan-2-carbaldehyde Schiff base of 2-amino pyridine, J. Saudi Chem. Soc. 15,161,(2011).
- [16] Singh R, Goswami Y. C., Goswami R, Semiempirical & Experimental Investigation on Coordination behavior of S-methyl $-\beta$ -N-(4-methoxyphenylmethyl)methylenedithio- carbazate Schiff base towards Co(II), Ni(II) and Cu(II) metal ions, *Journal of Chemistry*, 2, 1,(2011).
- [17] Kumar D., Agrawal M. C., Rajeev Singh, Theoretical Investigation of IR and Geometry of the Sbenzyl-β-N-(2-furylmethylketone)dithiocarbazate Schiff base by SemiEmpirical Methods, *Asian J. Chem.*, 19 (5),3703,(2007).
- [18]Kumar D., Agrawal M. C., Rajeev Singh, Theoretical Study of Pyridine-2-Amidoxime by Semi-empirical Methods, *Oriental J. Chem.*, 22(1), 67,(2006).
- [19] Kishor Arora & Anu Parmar, Theoretical IR Spectral and Computational Study of Some Schiff Base Compounds, *The International journal of science and Technoledge*, 3(9),116-126,(2015).