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Abstract: A novel method for direction of arrival (DOA) estimation and its relationship with various signal to noise ratios (SNRs) and 

number of samples is proposed in this paper. For achieving this a full rank Toeplitz matrix is formed using each row of input 

covariance matrix. By exploiting the joint diagonalization structure of the full set of Toeplitz matrices, a new cost function is designed. 

This cost function does not require a priori information of the source number. Thus a new spatial spectrum can be estimated and the 

DOAs can be estimated from it subsequently. 
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1. Introduction 
 
Array signal processing is an important branch in the field of 
array signal processing. The field of array signal processing 
can be classified into two; self-adaptation array signal 
processing and spatial spectrum estimation. Spatial spectrum 
estimation is focused on investigating the system of spatial 
multiple sensor arrays, with the main purpose of estimating 
the signal’s spatial parameters and the location of the signal 
source. The spatial spectrum expresses the signal distribution 
in the space from all directions to the receiver. Hence, if one 
can get the signal’s spatial spectrum, then the direction of 
arrival (DOA) can be obtained. As thus, spatial spectrum 
estimation is also called as DOA estimation. 
 
DOA estimation using sensor arrays has wide range of 
application prospect in radar, sonar, wireless 
communications, seismology measurement and biomedicine. 
There are many kinds of algorithms for DOA estimation like 
spectral estimation, Bartlett, Capon and subspace based 
algorithms. The subspace based direction of arrival (DOA) 
estimation methods like MUSIC and ESPIRIT are super 
resolution algorithms for uncorrelated and partially 
correlated signals. Under these circumstances the subspace 
based methods fail due to rank deficiency of input covariance 
matrix.  
 
Another drawback of subspace based algorithm is that they 
need a prior knowledge about the source number. Some 
algorithms exists which can be used where the source number 
is unknown. But a major problem with those approaches is 
that they cannot be applicable to and the case of coherent 
signals. Although some algorithms have been modified to 
eliminate this issue, the probability of successfully detecting 
the number of sources is still low when the signal to noise 
ratio (SNR) and sample size are smaller than a certain 
threshold. 
 
In this paper, a new method for direction of arrival (DOA) 
estimation of coherent signals is proposed which can 
overcome the limitations of existing algorithms. Along with 
this, relationship between DOA estimation with SNR and 
number of snapshots are devised in this paper. 

In this paper, we use boldface uppercase letters to denote 
matrices, bold face lower case letters for column vectors and 
lower case letter for scalar quantities. Superscripts (.)T, 
(.)*,(.)H, and (.)-1 represent transpose, complex conjugate, 
conjugate transpose and inverse, respectively. The 
operator  a denotes expectation value of a, 0m

is the 

1m zero vector and 
mI  is the m m  identity matrix. The 

 denotes the set of complex numbers and . , .
F

 represent 
the Euclidean norm of a vector, Frobenius norm and trace of 
a matrix respectively. 
 
2. Mathematical Model of DOA Estimation 
 

 
Figure 1: symmetric ULA model 

 
Consider a Uniform Linear Array (ULA) with (2M+1) 
isotropic sensors as shown in the figure 1. Each test signal 
source has the same but unrelated polarization. Generally 
consider that the signal sources are narrow bands. There are 
narrow band source signals impinging on the array from 
different directions in the far field and the first K signals are 
mutually coherent while the others are uncorrelated and 
independent of first K signals. Consider the first signal as the 
reference, the kth coherent signal becomes 

   1 , 2,.......,kj

k kp t e p t k K
                    (1)  

 
Where 

k  is the amplitude fading factor and 
k  is the phase 

change. 
 
Then the signals received by the mth element can be 
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Where  ip t the complex envelope of the ith signal is,   is 

the carrier wavelength, 
2


   is the array element spacing. 

Assume that the noise  mn t  is a white Gaussian process 

with zero mean and covariance 2  at the mth element. The 
observation vector is 

 X (t)    ,......,0,.......,
T

M Mx t x t      

 = B p (t) + n (t)                                 (3) 
Where p (t)    1 ,..........., Dp t p t     is the source signal 

vector and B= [b(θ1)……. b(θD)] is the array manifold where 

b (θD) 2 sin( ) 2 sin( ),...........,1,...........,D Dj M j M
e e

    
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
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  (4) 

Be the dth steering vector. 
 
3. Proposed Algorithm 
 
Here, we develop a new algorithm for DOA estimation of 
coherent signals without knowing the source number.  
The input covariance matrix of x (t) can be obtained as, 

    HE x t x t                              (5) 

The  ,m n  entry of   can be expressed as 
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Using the mth row of the input covariance matrix R, we can 
form the Toeplitz matrix 

mR  
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Where 1,M mI 

is the  ( 1) 1M M   matrix with one on its mth 

diagonal and zero else where  
 B = [b(θ1)……. b(θD)] denotes a new steering matrix with 
the dth steering vector being 

b(θD)
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And  ,1 ,,.........,m m m DN diag N N denotes pseudo signal 

covariance matrix. 
In the absence of noise mR can be written as  

    ,
1

D
H H

m m i i i

i

Rm BN B N b b 


                    (11)  

Since the –mth and mth rows of  are conjugate symmetric, 
there is no need to adopt all the  2 1M  rows to form Toeplitz 
matrices. Without loss of generality, we employ the first 
 1M  rows of  and thus there are only  1M  Toeplitz 
matrices containing different static information. Since 

mN has full rank, we utilize these  1M  Toeplitz matrices to 
identify the range space of array manifold matrix B estimate 
the DOA parameters. 
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Since 
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Substituting (12) into (11) yields  
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1

D
H

m d m i i i d m d

i
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From (14) we decide that if is one of the true DOAs there 
always exists a scalar mv that 

mR a  and  b  parallel. That is, 

   , 0m mR a v b M m                               (15) 
This leads to the optimization problem as follows, 

    
20

min , , m m

m M

J v a R b v b


 


                    (16)  

Such that 1v    

Where  b  is the steering vector with parameter to be 

optimized, 1,Ma  and   1
0,............, T M

Mv v v 

  . 
 
Since a and v are unknown parameters. It is difficult to 
optimize (16) by searching for DOAs directly. To dodge this 
problem we try to simplify (16). 
By expanding (16), 
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Since
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2 1m

m M

v v


  and (16) can be rewritten as 
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Keeping  and v  constant, differentiate (20) with respect to 
a and then setting the resultant expression to zero to obtain 
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Which leads to  
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 1
opta Q V v                           (22) 

Substituting (22) back into (16), 
     1min , 1 H HJ v M v V Q V v
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Minimizing    1H Hv V Q V v   is equal to maximizing its 
negative version. 
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As a result we have 
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Where the last equation holds if and only if v is the Eigen 
vector of    1HV Q V   corresponding to its maximum 

Eigen value that is 1v z and 1  is the maximum Eigen 
value. Therefore (23) can be further simplified as  

  min J


                                     (25) 

      11 max HJ M eig V Q V                (26) 

Where  max .eig denotes the maximum Eigen value of a 
matrix. Thus we can have the pseudo output power spectrum 
as  

 
    1

1
1 max H

D
M eig V Q V


 


 

          (27) 

The DOAs are selected as the angles corresponding to the 
highest local maxima of  D    
  
4. Simulation Results 
 
4.1 Spatial spectrum of proposed algorithm and MUSIC 
algorithm 
 
The figure 2 & 3 displays how two coherent signals are 
recognized by MUSIC algorithm and proposed algorithm. 
Here two signals with equal powers arrive at a 5 element 
ULA from angles and the number of snapshots is N=400. 
The SNR is set to be 10dB. The simulation results are shown 
in the figure 2 & 3. As can be seen from the figures for 
coherent signals, classic MUSIC algorithm has lost 
effectiveness while proposed algorithm can be effectively 
applied to remove the signal correlation feature, which can 
distinguish the coherent signals and estimate the angle of 
arrival more accurately. This verifies the fact that when given 
a 5 element ULA, the proposed method can resolve both the 
coherent signals where the classic MUSIC algorithm fails. 
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Figure 2: Spatial spectrum of DOA estimation of coherent 

signals using MUSIC algorithm 
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Figure 3: Spatial spectrum of DOA estimation of coherent 

signals using proposedalgorithm 
 
4.2 The Relationship between DOA estimation &SNR 
 
The figure 4 shows how two signals are recognized by the 
proposed algorithm under different SNRs. There are two 
independent narrow band signals, the incident angle is 
200and 600 respectively. The number of snapshots is 400, the 
SNR is -20dB, 0dB and 20db.The simulation results are 
shown in the figure 4. 
 
As can be seen from the figure the dashed line shows the 
SNRs is -20dB, the solid line shows the SNR is 0dB & dash-
dotted line shows the SNR is 20dB, with the other conditions 
remaining unchanged, with the increase in SNR, the beam 
width of DOA estimation spectrum becomes narrow, the 
direction of signal becomes clearer and the accuracy of 
proposed algorithm is also increased. 
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Figure 4: Relationship between DOA estimation and SNR 

 
4.2 The Relationship between DOA estimation & number 
of snapshots 
 
The figure 5 shows how two coherent signals are recognized 
by the proposed algorithm when different snapshots are used. 
There are two independent narrow band signals, the incident 
angle is 020 and 060 respectively, the SNR is 20dB, the 
number of snapshots is 5, 50 & 200. 
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Figure 4: Relationship between DOA estimation and number 

of snapshots 
 

As can be seen from the figure, the dashed line shows the 
number of snapshots are 5, the solid line shows the number 
of snapshots are 50 and the dash dotted line shows the 
number of snapshots are 200. With the other conditions 
remaining unchanged and with the increase in the number of 
snapshots the beam width of DOA estimation spectrum 
becomes narrow, the direction of array element becomes 
good and accuracy of proposed algorithm is increased. 
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