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Abstract: The accuracy of Global Positioning System (GPS) is increased with the coupling to Inertial Navigation System (INS) to 

accomplish navigation. This paper proposes an algorithm to filter and fuse the GPS and INS information. Sigma point kalman filter is 

employed to simulate the information convergence of the dynamic model which maintains better performance in nonlinear system. So 

we can obtain a better precise filtering result when both are online. At the same time, the INS data is trained with the result as training 

target when it is the unique input. This paper raises the concept that Support Vector Machine (SVM) is adopted to train the INS data 

when GPS is offline and the simulated annealing is applied to realize the optimization of the parameters of kernel function and the 

penalty function in the SVM algorithm. Therefore, the integration navigation could retain almost as precise as the GPS when the GPS is 

out of coverage 
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1. Introduction 
 
Navigation is a field that focuses on the process of 
monitoring & controlling the movement of craft or vehicle 
from one place to another. This includes four general 
categories: Land Navigation, Marine Navigation 
Aeronautics Navigation Space Navigation. It is also term of 
art used for the specialized knowledge used by the 
navigators to perform navigation task. All navigational 
techniques involve locating the navigator‟s position 
compared to known locations or patterns. Navigation, in the 
broad sense, can refer to any skill that involves locating the 
position & direction. In the sense, navigation includes 
orienteering & pedestrian navigation. 
 
Global Positioning System (GPS) based navigation systems 
have been used in Land Vehicle Navigation Systems 
(LVNS) due to their low price, easy installation, and other 
beneficial factors. The level of performance required of an 
LVNS recently increased with the successful 
implementation of LVNS in unmanned land vehicles, with 
the development of augmented reality for land vehicles & 
the availability of high grade LVNSs [1]. 
 
From the point of view of different environmental 
conditions, The Inertial Navigation System (INS) is ideal, 
rather than using signals from satellites, in case of GPS[2]. 
The INS is based on measurements of linear accelerations 
and angular velocities. INS measures the linear acceleration 
and angular rates of moving vehicles through its 
accelerometers and gyroscopes sensors. The main interest is 
the position determination. The INS error bound grows with 
time, due to the unbounded positioning errors caused by the 
uncompensated gyro and accelerometer errors affecting the 
INS measurements. INS provides high-accuracy in case of 
three-dimensional positioning when the GPS positioning is 
poor or unavailable over short periods of time. In addition, it 
provides much higher update positioning rates compared 
with the output rate conventionally available from GPS [3]. 
 

The limitations of GPS are related to the loss of accuracy in 
the narrow-street environment, intentional disruption of the 
service, poor geometrical-dilution-of-precision (GDOP) 
coefficient and the multipath reflections.GPS-based 
navigation system requires at least four satellites, so a major 
drawback of GPS dependence navigation systems is that 
their accuracy degrades significantly with satellites 
outages[4]. Signal outage is more significant for land vehicle 
positioning in urban centers, which takes place when 
encountering highway overpasses or tunnels due to the 
obstructed signals. So it is suitable to integrate this type of 
navigation system with a different type of navigation system 
in order to reach a greater autonomy.Both INS and GPS 
suffer from various error sources and deficiencies which 
propel the accompaniment of the two complementary 
systems. INS exhibit relatively low noisy outputs which tend 
to drift over time[5]. Contrary to INS, GPS outputs are 
relatively noisy but do not exhibit long-term drift. 
Combining both of these systems gives a superior navigation 
performance than standalone system [6]. So to achieve 
strong performance, GPS/INS integrated system widely 
used.But major drawback of GPS/INS integrated system is 
that some time GPS lost its signals in critical conditions for 
example in tunnel, hilly areas etc [7]. So at that time it is 
necessary to some type of mechanism should be adopted to 
train the INS data during GPS outage. For this purpose 
Support Vector Machine (SVM) is used to train the INS data 
during GPS outage & the simulated annealing is applied to 
realize the optimization of the parameters of the kernel 
function& the penalty function in the SVM algorithm. 
Therefore the integrated navigation could retail almost as 
precise as the GPS when GPS is off-line. 
 
2. Model 
 
Two models are discussed in this section, first one the model 
of GPS/INS integrated navigation system and the training 
model of GPS/INS.. 
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A. GPS/INS Integrated Navigation System 
The model of the integrated navigation system adopted in 
this paper is designed by using nonlinear filtering; the errors 
of the navigation system are selected as system state. They 
are combined as the state vector that the errors of the 
attitude, velocity, position, gyroscopes and accelerometers, 
 
X = [ϕE, ϕN, ϕU, δVE, δVN, VU δλ, δL, δh, εbx, εby, 
εbcεrx, εry, εrz, λx, λy, λz] 
 
where the E, N, U are the describes the east, north and up 
orientation of the ENU frame respectively. ϕ is the error-
angle of the platform, δVrepresents velocity error. And δλ, 
δLand δhare the longitude, latitude and height value 
respectvely. εis the gyroscopes drift. 
 
Then model can be defined as follows: 
X = F(t)X(t) + G(t)W(t), 
Z(t) = H(t)X(t) + v(t), 
whereF(t) is the non-linear transition matrix ofthe error 
model, and G(t) is the noise driving matrix. H(t) is the 
measurement matrix. 
 
The H(t) and v(t) are defined as the following, where v(t) is 
the measurement noise matrix.  
Hv(t) = [03×6, diag{111}, 03×9], 
vv(t) = [δvEG, δvNG, δvUG]. 
 
B. The Training Model 

 

 
Figure 1: The SVM training model. 

 
At first the progress of the dynamic system is described as 
the following. The velocity signal of north and east EGPS 
NGPS from GPS is trusted as real speed when four or more 
GPS satellites are in the sight. And at the same time, the 
model is trained with the velocity signal of north and east 
from the INS EINS NINS and time t as the input, and the 
VEGPS and VNGPS as the output.  
 
3. Algorithm 
 
This section implies , the algorithms applied, & optimized 
SVM are detailed specially. 
 
4. Methodology 
 
The INS data are divided into 2 groups, first one of which is 
used to obtain the online optimum value by the UKF with 
the corresponding GPS data, and applied as training data 
along with the optimum value, and the second group is used 
to testify the regression. The methodology is expressed in 
the Fig.2. After optimization of each filtering step is 
deduced by the UKF, the final output is determined by the 
GPS data and the optimum error data collectively. In case of 
GPS outage, the regression model of INS and the final 
output is necessary which is accomplished training by the 
SVM 

 
 
 

 
Figure 2: Methodology Process 

 
5. Sigma Point Kalman Filter 
 
Introduction of Sigma Point Kalman Filter (GPS/INS 
Integration) 
Instead of linearization required by EKF, the SPKF does not 
require to approximate nonlinear system dynamic and 
measurement models using the Jacobian in order to calculate 
the covariance of random vector propagated through the 
nonlinear models. Instead, a set of deterministically selected 
sigma-points is chosen, which have the same mean and 
covariance as the original random vector. Then, these sigma 
points are propagated through the nonlinear models, and the 
mean and the covariance accurately to the second order for 
arbitrary nonlinear functions, while the EKF achieves first 
order accuracy only. The different types of sigma-point 
filters, such unscented Kalman filter or central difference 
Kalman filter, are distinguished by the weights and the 
scaling parameter associated with the sigma-points. 
Throughout this paper, the unscented Kalman filer is used. 
 
However, UKF has been designed for many practical 
systems that have non-linear state update and/or 
measurements equations [20]. In addition, the performance 
of the EKF heavily depends on how the system dynamics 
and measurements are modelled [21]. The state transition 
equation can be expressed as: 
XK = f(XK-1,UK-1) + WK. 
 
The non-linear state function f is used to determine the 
predicted state from the previous state. The observation 
vector can be expressed as function of the state through the 
measurement equation: 
ZK = h(XK) + VK. 
 
The observation function relates the measurements with the 
true state . As mentioned before the UKF algorithm is 
composed of two main phases: „predict phase‟ and „update 
phase‟ described as follows. 
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Predict Phase 
 
The predict phase is used to predict the a priori state vector 
on the basis of the previous a posteriori estimated state 
vector. Considering a PV model for the state equation in 2- 
dimensional case, the state vector can be defined as Xk= 
[XkYk . Xk .Yk] where .XKand .YKdenote the speed of the 
mobile target node along the X &Y axis, respectively. 
Accordingly, the matrix can be defined as follows: 

FK =  

1 0 ∆𝑡𝑘 0
0 1 0 ∆𝑡𝑘
0 0 1 0
0 0 0 1

  

Where ∆tk represents the time elapsed between the previous 
estimation time and the current one. The estimated 
covariance matrix related to the current a priori state vector 
is evaluated from the previous a posteriori covariance matrix 
and the process noise covariance matrix. 
 
The Q matrix takes into account un-modeled factors of the 
system. For , it can be defined as follows: 

Q = A. Ϭ𝑥2 0
0 Ϭ𝑦2

 .AT 

Where Ϭ2
x and Ϭ2

y denote the variances of the acceleration 
noise along the and axis, respectively. The matrix A can be 
defined as: 

A =  
∆𝑇𝑘

2
I2

∆𝑇𝑘 𝐼2
  

 
Where I2 represents the identity matrix of dimensions 2. The 
covariance matrix P0 related to the initial state vector X0 , for 
the PV model in 2-dimensional case can be defined as: 

P0= 

 
 
 
 
Ϭ𝑥2 0 0 0
0 Ϭ𝑦2 0 0

0 0 Ϭ𝑥02 0
0 0 0 Ϭ𝑦02 

 
 
 

. 

Where Ϭ2
x and Ϭ2

y represent the initial variances of the state 
vector components. 
 
Update Phase 
The update phase, also called correction phase, further 
refines the a priori position estimate by using the 
observation vector Zk. First of all, the innovation vector Yk 
is calculated as the residual between the observed 
measurement Zk and the expected measurement h(Xk) : 
Yk= Zk- h(Xk) 
 
The covariance matrix Sk of the innovation vector can be 
computed as follows: 
 SK = HK.PK׀ K-1 +RK. 
 
Where Rk represents the covariance matrix related to the 
observation vector and Hk represents Jacobian matrix related 
to expected measurements.  
 
Finally, the a posteriori state covariance matrix Pk computed 
by correcting the aSupport Vector Machine (SVM): 
 
Introduction 
 
SVMs have been developed in the reverse order to the 
development of neural networks (NNs). SVMs evolved from 
the sound theory to the implementation and experiments, 

while the NNs followed more heuristic path, from 
applications and extensive experimentation to the theory. It 
is interesting to note that the very strong theoretical 
background of SVMs did not make them widely appreciated 
at the beginning. The publication of the first papers by 
Vapnik, Chervonenkis (Vapnik and Chervonenkis, 1965) 
and co-workers went largely unnoticed till 1992. This was 
due to a widespread belief in the statistical and/or machine 
learning community that, despite being theoretically 
appealing, SVMs are neither suitable nor relevant for 
practical applications. They were taken seriously only when 
excellent results on practical learning benchmarks were 
achieved (in numeral recognition, computer vision and text 
categorization). Today, SVMs show better results than (or 
comparable outcomes to) NNs and other statistical models, 
on the most popular benchmark problems. 
 
The learning problem setting for SVMs is as follows: there 
is some unknown and nonlinear dependency (mapping, 
function) y = f(x) between some high-dimensional input 
vector x and scalar output y (or the vector output y as in the 
case of multiclass SVMs). There is no information about the 
underlying joint probability functions here. Thus, one must 
perform a distribution-free learning. The only information 
available is a training data set 
 
Note that this problem is similar to the classic statistical 
inference. However, there are several very important 
differences between the approaches and assumptions in 
training SVMs and the ones in classic statistics and/or NNs 
modeling. Classic statistical inference is based on the 
following three fundamental assumptions 
 
Data can be modeled by a set of linear in parameter 
functions; this is a foundation of a parametric paradigm in 
learning from experimental data 
 
In the most of real-life problems, a stochastic component of 
data is the normal probability distribution law, that is, the 
underlying joint probability distribution is a Gaussian 
distribution. 
 
Because of the second assumption, the induction paradigm 
for parameter estimation is the maximum likelihood method, 
which is reduced to the minimization of the sum-of-errors-
squares cost function in most engineering applications. 
 
All three assumptions on which the classic statistical 
paradigm relied turned out to be inappropriate for many 
contemporary real-life problems (Vapnik, 1998) because of 
the following facts: 
1) Modern problems are high-dimensional, and if the 

underlying mapping is not very smooth the linear 
paradigm needs an exponentially increasing number of 
terms with an increasing dimensionality of the input space 
X (an increasing number of independent variables). This is 
known as „the curse of dimensionality‟. 

2) The underlying real-life data generation laws may 
typically be very far from the normal distribution and a 
model-builder must consider this difference in order to 
construct an effective learning algorithm. 

3) From the first two points it follows that the maximum 
likelihood estimator (and consequently the sum-of-error-
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squares cost function) should be replaced by a new 
induction paradigm that is uniformly better, in order to 
model non-Gaussian distributions. 

 
In addition to the three basic objectives above, the novel 
SVMs‟ problem setting and inductive principle have been 
developed for standard contemporary data sets which are 
typically high-dimensional and sparse (meaning, the data 
sets contain small number of thetraining data pairs). SVMs 
are the so-called „nonparametric‟ models. „Nonparametric‟ 
does not mean that the SVMs‟ models do not have 
parameters at all. On the contrary, their „learning‟ (selection, 
identification, estimation, training or tuning) is the crucial 
issue here. 
 
6. Simulation 
 
This chapter describes the implementation of algorithms and 
theoretical work which has been explained in previous 
chapter. First implementation of sigma point Kalman Filter 
is explained then effect of multipath environment on sigma 
point Kalman Filter is explained. After this the SVM 
explained which has been used to predict the multipath 
environment.  
 
Simulation Scenario in MATLAB: 
 
All work is done in MATLAB 7.9. The simulation scenario 
consists of a straight 5 km road on which vehicles are 
moving.Vehicle travelling along a straight road consist 
different regions (environments) such as an open 
environments and multipath environments 

 
Figure 3: Initial Position of the Vehicles 

 
There are total five regions are shown which consists of 
open as well as multipath environment. Particularly, an open 
environment does not consist of multipath effect while 
multipath environment consist of multipath effect because it 
consisting inner city area and where high buildings are 
located. The vehicles are moving in straight road with 
constant velocity. The simulation period is equal to total 
time required for a vehicle to cover a distance of 5 km i.e. 
360 seconds (vehicles velocity is 50 km/hr). In simulation 
five regions are considered with an open as well as multipath 
environment. The first region consists of open environment 
which is of 2000 meter. Second region consists of multipath 
environment which is of 300 meter. Third region consists of 
open environment of 500 meter, fourth region consists of 
multipath environment which is of 400 meter and last fifth 
region consists of open environment which is of 1900 meter.  

 
Figure 4: Multipath reflection of GPS data 

Sigma Point Kalman Filter Implementation and Results: 
 
The GPS and INS are two important localization techniques. 
But some errors are presents due to these two techniques 
when we are going to find localization of a particular node 
(in this work node is considered as a vehicle). Basically 
these errors are due to local and global errors of GPS and 
INS measurement errors. If there is any error due the INS 
measurement i.e. due to the vehicles velocity or direction the 
system will be affected. Thus this type of errors can be 
represented UKF. In a UKF the error in the state is 
represented by process noise covariance matrix, 

Q = Ϭ𝑄2𝐼. 
The value of ζQ  is taken as 0.5 m. similarly the local and 
global errors in the GPS receiver are represented by 
measurement noise covariance matrix of the Kalman Filter, 
R = Ϭ𝑅2𝐼. 
Where ζR  is set to 10 m to 15 m. It shows the variation of 
GPS in open environment but the same value in multipath 
environment is 100 m to 150 m because of loss of GPS 
signal in multipath environment due to high buildings, 
number of trees near to the road etc. 
 
The simulation is done by using MATLAB in which we can 
consider it as the vehicle is moving in same direction with 
constant velocity. For every second Kalman Filter„s time 
update state will estimate location of a vehicle 
 
Figure 6 shows the unscented Kalman Filter estimate 
localization using loosely coupled approach travelling over 5 
km with constant velocity of 50 km/hr. It shows the effect of 
multipath environment is minimized in the UKF output. 

 
Figure 5: GPS/INS fusion (loosely coupled). 

 
The INS displacement error with respect to real path is 
shown in below: 
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Figure 6: INS displacement error (loosely coupled). 

 
Tightly-Coupled integration eliminates the usage of 
cascaded filters unlike loosely coupled integration. 
Therefore, correlation of the measurements in GPS 
navigation filter is prevented. Instead of navigation solution 
of GPS, pseudo ranges and pseudo range rates obtained from 
Doppler data are used as the measurements of the INS/GPS 
integrated Kalman filter. The difference between tightly 
coupled & loosely coupled integration is shown in below: 

 

 
Figure 7: Error diff. between tightly & loosely coupled 

approach 
 
So we can easily minimized INS displacement error with the 
help of tightly coupled approach. 

 
Figure 8: INS displacement error 

 
Choice of these measurements brings nonlinearity to the 
measurement model of the integrated filter. Even when less 
than four satellites are available, integration filter will keep 
on operating since this system does not require a full GPS 
solution to aid the INS. 

 
 Figure 9: Tightly coupled GPS/INS Integration 

 
There is only INS available during GPS outage; therefore it 
is necessary to establish a well-trained model to predict the 
positioning information. Artificial neural network (ANN) 
can be used for this purpose. In comparison with ANN, 
Support Vector Machine (SVM) can provide better genetic 
ability, thus it takes shorter time for training to obtain better 
training performance. SVM predicts the pattern of GPS data 
with the help of past samples & INS data. 

  
 

  
Figure 10: SVM prediction 

 
7. Conclusion 
 
This paper proposes that algorithm of sigma point kalman 
filter can be implemented in GPS/INS integrated system to 
perform the better navigation jointly when GPS is online. 
Then it presents a off line GPS/INS integration model in the 
case of GPS outage. For that purpose, support vector 
machine (SVM) is used to train the regression data. From 
the simulated results we can say that tightly coupled model 
of GPS/INS navigation system maintains better stability than 
that of loosely coupled model of GPS/INS navigation 
system. 
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