
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 10, October 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Factor Analysis of Robust Secure Software
Development Model

Ayoade Oluwafisayo Babatope
1
, Adetunmbi Adebayo Olusola

2

1Lecturer of Computer Science Department, School of Science, College of Education, Ikere Ekiti, Ekiti State,Nigeria

2Doctor of Computer Science Department, School of Science, Federal University of Technology, Akure, Ondo State, Nigeria

Abstract: Software development has advanced to a stage where quality attributes of software and information security are playing
increasingly important role. The introduction of electronic commerce, mobile commerce and banking related applications have resulted
to a whole new set of requirements for information systems. Besides reliability, performance and other quality attributes, the level of
system security is starting to play a major role when customers or end users are making their buying decisions. There are also some clear
signs that product liability laws may start taking security aspects into consideration. In the light of this there is an obvious need for a
special consideration of system security when designing software products for high security applications. In this paper, we perform factor
analysis using Principal Component Analysis (PCA) on the characteristics of five software development models and classify them based
on key requirements for a software development project using responses from selected software developers. The objective is to help
project managers and software developers select an appropriate software development model that is most suitable to the requirements of
their software projects.

Keywords: Software Development, Software Development Models, Development Life Cycle, Information Security, Principal Component
Analysis

1. Introduction

Software development is referred to as the activity of
computer programming, which is the process of writing and
maintaining the source code, whereas the broader sense of
the term includes all that is involved between the conceptions
of the desired software through to the final demonstration of
the software [8]. Therefore, software development may
include research, new development, modification, reuse, re-
engineering, maintenance, or any other activities that result
in software products [6]

Software development is the act of working to produce/create
software. This software could be produced for a variety of
purposes the three most common purposes are: (i.) to meet
specific needs of a specific client/business (e.g. automation
of paying machines in banking system), (ii.) to meet a
perceived need of some set of potential users (e.g.
commercial and open source software), (iii.) for personal use
(e.g. a scientist may write software to automate a mundane
task)

Software, as a product, delivers the computing potential
embodied by computer hardware. It is an information
transformer – producing, managing, acquiring, modifying,
displaying, or transmitting information that can be as simple
as a single bit or as complex as a multimedia simulation [13]

Information security means protecting information and
information systems from unauthorized access, use,
disclosure, disruption, modification or destruction [1].
Information security also is explained as the tasks of
guarding information that is in digital format which is
manipulated by a microprocessor [18]

Information security is concerned with the confidentiality,
integrity and availability (CIA) of data regardless of the form
the data may take: electronic, print, or other forms [1]. The

field of information security has grown and evolved
significantly in recent years.

Figure 1 shows the model of integrated CIA triad with
respect to physical, personal and organizational levels. As a
protection for software development process in information
systems which comprises of hardware, software and
communications; information security can be viewed as a
process of identifying and applying information security
industry standards, as mechanisms of protection and
prevention against software threats such as snooping or
wiretapping, spoofing, tampering, repudiation, or delay
(denial of service-DOS), etc, at three levels or layers viz
physical, personal and organizational. Essentially, procedures
or policies are implemented to tell people (developers,
administrators, users and operators) how to use products to
ensure software security against threats within the
organizations

During the last two decades, software development has made
enormous progress and supporting tools have improved
significantly. Different current tools have formed a second
generation of instruments to support software development.
Development of a reliable software system has to be
approached in a systematic way and requires use of
appropriate tools and mechanisms to ensure a high level of
quality for the system under development. Testing is an
important phase in software development life cycle that has
to be managed very well. However, there is a lack of
comparisons of new techniques with software development
in terms of design, efficiency, code quality, testing and time
effort. Hence, secured software development needs to be
given more attention.

Paper ID: SUB158850 957

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 10, October 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 1: Model of integrated CIA triad (Layton and Timothy,

2007)

2. Literature Review

2.1 Security Polices

Security policy defines what is secure for a system; what is
and what is not allowed in a system, be it an organization or
a computer; or what a system is permitted to do or not to do.
Security policy addresses constraints on functions and flow
among them, constraints on access by external systems and
adversaries including programs and access to data by people.
In order to implement security policy, two methods are
important. These means are security model and security
mechanisms. Security model formalizes and specifies the
policy while security mechanisms enforce the model and
policy. Security mechanism can be anything ranging from a
process to an automatic tool that enforces at least part of the
security policy. A security mechanism is said to be either
precise if the mechanism only allows all secure states or
broad if the mechanism allows also insecure states.

2.2 Risk Analysis

Risk is defined as the combination of the probability of
occurrence of harm and the severity of that harm [9]. Risk
can be expressed as:

Risk is also the expectation of loss expressed as the
probability that a particular threat will exploit a particular
vulnerability with a particular harmful result [5] while Risk
analysis is a process that systematically identifies valuable
system resources and threats to those resources, quantifies
loss exposures (i.e., loss potential) based on estimated
frequencies and costs of occurrence, and (optionally)
recommends how to minimize total exposure. [9] defines risk
analysis in the following manner:
1) Risk is the probability of realization of a threat.
2) Risk impact is the loss caused by a realized threat.
3) Risk exposure is the expected value of a threat, that is,

risk of the threat multiplied by risk impact of the same
threat.

4) Risk mitigation is a course of action that can reduce the
probability, loss or both associated with a certain threat.

However, risk mitigation can be divided into four
different actions of avoiding risk. They are:
 actions that avoid the risk;
 actions that reduce the risk,
 actions that transfer the risk, and
 actions that assume the risk.

Nevertheless, cost-benefit analysis on choosing what risks to
mitigate and how to mitigate is based on computing risk
leverages given by:

2.3 Access Control Models

Access control is a process whereby access to the resources
of a system is limited to authorized users, programs,
processes, or other systems [11]. It can also be defined as the
ability to allow or deny access to different resources based on
the accessing entity.

Access control consists of authentication – “Who is accessing
the system?” authorization – “Can the user do this?" and
possibly of auditing (accountability) – “Check what the user
has done". Security policies and security models that model
those policies can use two kinds of access control, either
alone or in combination (Figures 2 (a & b)).

The first is known as Discretionary Access Control (DAC)
where the owner of the data decides who can access the data
while the other is known as Mandatory Access Control
(MAC) where some higher authority controls the access and
owner of the data cannot override it.

Figure 2: Diagrammatic representation of Access control

[10]

Figure 3: Diagrammatic representation of Information flow

control [10]

2.4 Software Development Process

Software development process (also known as Software Life
Cycle or Software process) is a structure imposed on the
development of a software product. There are several models
for such processes, each describing approaches to a variety of
tasks or activities that take place during the process.
Nevertheless, a lifecycle model is considered a more general
term while a software development process a more specific
term.

Paper ID: SUB158850 958

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 10, October 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Software development process consists of different varieties
of tasks or activities of which majority of the software
products developed are mandated to follow in order to be
referred to as secured software for any particular target. The
various tasks/activities are as follows:

1) Planning: Planning is the first priority activity of creating

secure software for a particular target. The most
important task in creating a software product is extracting
the requirements or requirements analysis. Customers
typically have an abstract idea of what they want as an
end result, but not what software should do. Incomplete,
ambiguous, or even contradictory requirements in
planning are recognized by skilled and experienced
software developers/engineers at this point. Once the
general requirements are gathered from the client, an
analysis of the scope of the development should be
determined and clearly stated often called a scope
document.

2) Implementation, testing and documenting:
Implementation is the part of the process where software
developers actually program the code for the project.
Software testing is an integral and important part of the
software development process and it is a process that
ensures that defects are recognized as early as possible.
Documenting is the internal design of software for the
purpose of future maintenance and enhancement and is
done throughout software development process. It is very
important to document everything in the project as this
will assist in the phase of deployment and maintenance of
the software.

3) Deployment and maintenance: Deployment is the
process of implementing the code that has been written
and tested for the particular target and it starts after the
code is appropriately tested, approved for release and sold
or otherwise distributed into a production environment.
Software Training and Support is important and a lot of
developers fail to realize that. Maintaining and enhancing
software to cope with newly discovered problems or new
requirements can take far more time than the initial
development of the software. It may be necessary to add
code that does not fit the original design to correct an
unforeseen problem or it may be that a customer is
requesting more functionality and code can be added to
accommodate their requests. Bug Tracking System tools
are often deployed at this stage of the process to allow
development teams to interface with customer/field teams
testing the software to identify any real or perceived
issues. These software tools, both open source and
commercially licensed, provide a customizable process to
acquire, review, acknowledge, and respond to reported
issues.

3. Software Development Models

This paper elucidate five software development models on
their roles, process, responsibilities to the development &
environment, practices, adoption (change property),
experiences, scope of use and future plans about the software
development models. The selected software development
models that are considered for this analysis are as follows:
1) Waterfall Model (or classic or linear sequential model)
2) Spiral Model

3) Unified Process model
4) Scrum (Iterative or incremental) model
5) Extreme Programming – XP (Agile Modeling)

3.1 Waterfall Software Development Model

The simplest, the oldest and the most well-known software
development life cycle model (SDLC) is the Waterfall model
or linear sequential model or classic model, which states that
the phases are organized in a linear order (Figure 3(a)). The
waterfall approach emphasizes a planned and structured
progression between defined phases. Each phase consists of a
definite set of activities and deliverables that must be
accomplished before the subsequent phase can begin. The
phases are always named differently but the basic idea is that
the first phase tries to capture What the system will do, its
system and software requirements, the second phase
determines How it will be designed. The third stage is where
the developers start writing the code, the fourth phase is the
Testing of the system and the final phase is focused on
Implementation tasks such as training and heavy
documentation [17].

Figure 4: The Waterfall Software Life Cycle Model [17]

A project begins with feasibility analysis. On the successful
demonstration of the feasibility analysis, the requirements
analysis and project planning begins. The design starts after
the requirements analysis is done. And coding begins after
the design is done. Once the programming is completed, the
code is integrated and testing is done. On successful
completion of testing, the system is installed. After this the
regular operation and maintenance of the system takes place.

With the waterfall model, the activities performed in a
software development project are requirements analysis,
project planning, system design, detailed design, coding and
unit testing, system integration and testing. The waterfall
model shows a process, where developers are to follow these
phases in order [17]:
a) System Specification (Requirements specification &

Requirements analysis): A Software Requirements
Specification (SRS) is a complete description of the
behavior of the system to be developed. It includes a set
of use cases that describe all the interactions the users will
have with the software.

Paper ID: SUB158850 959

http://en.wikipedia.org/wiki/Computer_programming

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 10, October 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

b) Software Design: Software architectural design is a
process of problem-solving and planning for a software
solution. After the purpose and specifications of software
are determined, software developers will design or
employ designers to develop a plan for a solution. It
includes low-level component and algorithm
implementation issues as well as the architectural view.
The software requirements analysis (SRA) step of a
software development process yields specifications that
are used in software engineering.

c) Implementation (or Coding): Implementation is a
realization of a technical specification or algorithm as a
program, software component, or other computer system.
Different types of implementations may exist for a given
specification or standard. For example, web browsers
contain implementations of World Wide Web
Consortium-recommended specifications (W3C), and
software development tools contain implementations of
programming languages.

d) Integration: System integration is the bringing together of
the component subsystems into one system and ensuring
that the subsystems function together as a system. In
information technology, systems integration is the process
of linking together different computing systems and
software applications physically or functionally. Software
integration consists of different methods which include:
 Vertical Integration: the process of integrating

subsystems according to their functionality by creating
functional entities also referred to as silos.

 Star Integration or Spaghetti Integration: is a process of
integration of the systems where each system is
interconnected to each of the remaining subsystems

 Horizontal Integration or Enterprise Service Bus
(ESB): is an integration method in which a specialized
subsystem is dedicated to communication between
other subsystems.

e) Testing (or Validation): Software testing is an
investigation conducted to provide stakeholders with
information about the quality of the product or service
under test. Software testing determines whether the
software meets the specified requirements and finds any
errors present in the code. Software testing also provides
an objective, independent view of the software to allow
the business to appreciate and understand the risks at
implementation of the software.

f) Deployment (or Installation): Software deployment is all
of the activities that make a software system available for
use. The general deployment process consists of several
interrelated activities with possible transitions between
them. These activities can occur at the producer site or at
the consumer site or both.

g) Maintenance: Software maintenance is the modification
of a software product after delivery to correct faults, to
improve performance or other attributes, or to adapt the
product to a modified environment.

3.2 Spiral Software Development Model

This is one of the recent models that have been proposed by
Barry Boehm. As the name suggests, the activities in this
model can be organized like a Spiral. The Spiral has many
cycles. The key characteristic of this model is risk
management at regular stages in the development cycle,

which combines some key aspect of the waterfall model and
prototyping methods, but provided emphasis in key areas
which have been neglected by other methods e.g. deliberate
iterative risk analysis which is particularly suited to large-
scale complex systems [4].

The radial dimension represents the cumulative cost incurred
in accomplishing the steps done so far and the angular
dimension represents the progress made in completing each
cycle of the Spiral. The structure of the Spiral model is
shown in Figure 3(b). Each cycle in the Spiral begins with
the identification of objectives for that cycle and the different
alternatives that are possible for achieving the objectives and
the imposed constraints. The Spiral model works for
developed projects as well as enhancement projects.

The Spiral is visualized as a process passing through some
number of iterations, with the four quadrant diagram
representative of the following activities:
a) formulate plans to: identify software targets, selected to

implement the program, clarify the project development
restrictions;

b) Risk analysis: an analytical assessment of selected
programs, to consider how to identify and eliminate risk;

c) the implementation of the project: the implementation of
software development and verification;

Figure 5: Spiral SDLC Model [4]

3.3 Unified Process Model

The Unified Process is a Software Engineering Process that
provides a disciplined approach to assigning tasks and
responsibilities within a development target. Its goal is to
ensure the production of high-quality software that meets the
needs of its end-users, within a predictable schedule and plan
[12].

Just like other heavyweight methodologies, the Unified
Process also enhances team productivity, by providing every
developer with easy access to a knowledge base with
guidelines, templates and tool mentors for all critical
development activities (i.e. requirement, design, test, project
management, or configuration management), so that they
share a common language, process and view of how to
develop software. Unified Process activities create and
maintain models as the process that emphasizes the
development and maintenance of semantically rich

Paper ID: SUB158850 960

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 10, October 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

representations of the software system under development. It
is also a guide on how to effectively use the Unified
Modeling Language (UML), an industry-standard language
that allows software developers to clearly communicate
requirements, architectures and designs [3]. In Unified
process model, all efforts, including modeling, is organized
into workflows and is performed in an iterative and
incremental manner. The lifecycle of the Unified Process is
presented in Figure 6.

Figure 6: Unified Process Model Lifecycle [3]

The Unified Process Model is also supported by tools, which
automate large parts of the process and are used to create and
maintain the various models and other functions of the
software engineering process i.e. visual modeling,
programming, testing, etc. As a model, the Unified Process
Model is a configurable process whereby no single process is
suitable for all software development. It contains a
Development Kit, providing support for configuring the
process to suit the needs of a given target/organization.

The Unified process is subdivided into two dimensions or
two axes which are the Content Dimension or Static Aspect
(which is subdivided into 9 Workflows) and the Time
Dimension or Dynamic Aspect (which is subdivided into 4
Phases) as shown in Figure 3(c).

3.4 Scrum (Iterative) Development Model

Scrum is an iterative, incremental process for developing any
product or managing system development process. It is an
experimental approach that applies the ideas of industrial
process control theory to system development resulting in an
approach that reintroduces the ideas of flexibility,
adaptability and productivity [15].

Scrum concentrates on how the team members should
function in order to produce the system flexibility in a
constantly changing environment which produces a potential
set of functionality following expiration of iteration cycles
(Figure 3(d)). The term ‘scrum’ originated from a strategy in
the game of rugby where it denotes “getting an out-of-play
ball back into the game” with teamwork [15].

Scrum‟s main idea is that system development involves
several environmental and technical variables such as
requirement, time frame, resources and technology that are
likely to change during the process. In the light of this, the
development process is unpredictable and complex, requiring
flexibility of the system development process for it to be able
to respond to changes. Hence, due to the development
process result, a system is produced which is useful when
delivered [13].

Active management practices and tools that existed in the
various phases of Scrum to avoid the problems caused by
volatility and difficulty includes Product Backlog, Sprints,
Sprint Planning Meeting, Sprint Backlog, Daily Scrum,
Effect Estimation and Sprint Meeting Review. [16]

Figure 7: The Scrum process [14]

Furthermore, Scrum helps to improve the existing system
engineering practices (e.g. testing practices) in an
organization as it involves frequent management activities
aiming at consistently identifying any deficiencies in the
development process as well as the practices that are used.

3.5 Extreme Programming (XP) Model

Extreme Programming is one of the most prominent
lightweight methodologies and embodies the Agile
Methodology itself because it is one of the first agile
processes that have been proposed. Extreme Programming,
fondly referred to as XP, is an approach to software
development based on the development and delivery of very
small increment of functionality. XP has evolved from the
problems caused by the long development cycles of
traditional development models [2]

The XP process can be characterized by short development
cycles, incremental planning, continuous feedback, reliance
on communication, and evolutionary design [2]. It relies on
constant code improvement, user involvement in the
development team and pair wise programming. It can be
difficult to keep the interest of customers who are involved in
the process at hand whereby team members may be unsuited
to the intense involvement that characterizes agile methods.
In this sense, XP team members spend few minutes on
programming, few minutes on project management, few
minutes on design, few minutes on feedback, and few
minutes on team building many times each day [19]

Paper ID: SUB158850 961

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 10, October 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Hence, the term „extreme‟ comes from taking these
commonsense principles and practices to extreme levels.
Prioritizing changes can be difficult where there are multiple
stakeholders (management). Maintaining simplicity requires
extra work and commitment from team members and
stakeholders.

The activities of the lifecycle of the XP project cycle is
divided into six phases namely: Exploration, Planning,
Iteration to Release, Production, Maintenance and Death
phases. Figure 3(e) shows the diagram representation of the
six phases of the lifecycle of the XP project system.

Figure 8: The Lifecycle of the XP Process [20]

However, just like in Scrum model where active actors are
important to the model, the XP model also has active actors
which are Programmer, Customer, Tester, Tracker, Coach,
Consultant, and Manager (the main boss) [12].

One of the fundamental ideas of XP is that there is no
process that fits every project but instead practices should be
tailored to suit the needs of the individual projects [3]. In this
sense, XP aims at enabling successful software development
despite vague or constantly changing requirements in small
or medium sized teams.

4. Principal Component Analysis (PCA)

Principal component analysis (PCA) is a mathematical
standard tool in modern data analysis because it is a simple,
non - parametric method for extracting relevant information
from confusing data sets. With minimal effort PCA provides
a roadmap on how to reduce a complex data set to a lower
dimension to reveal the sometimes hidden, simplified
structures that often underlie it [7]

Principal Component Analysis (PCA) uses an orthogonal
transformation to convert a set of observations of possibly
correlated variables into a set of values of linearly
uncorrelated variables called principal components. PCA has
been used for face recognition, motion analysis and
synthesis, clustering, dimension reduction, etc.

In computational terms, the principal components are found
by calculating the eigenvectors and eigenvalues of the data
covariance matrix. This process is equivalent to finding the
axis system in which the co-variance matrix is diagonal. The
eigenvector with the largest eigenvalue is the direction of
greatest variation, the one with the second largest eigenvalue
is the (orthogonal) direction with the next highest variation
and so on.

Definition: Let Σ be an n x n covariance matrix. There is an
orthogonal n x n matrix ϕ whose columns are eigenvectors of
Σ and a diagonal matrix γ whose diagonal elements are the
eigenvalues of Σ, such that

ϕTΣϕ = γ
Therefore, the matrix of eigenvectors ϕ as a linear
transformation transforms data points in the [X; Y] axis
system into the [U; V] axis system. In the general case, the
linear transformation given by ϕ, transforms the data points
into a data set where the variables are uncorrelated. The
correlation matrix of the data in the new coordinate system is
γ which has zeros in all the off diagonal elements.

The covariance matrix is used to measure how much the
dimensions vary from the mean with respect to each other. In
addition, the covariance of two random variables
(dimensions) is their tendency to vary together is:

cov (X; Y) = E[E[X] – X] · E[E[Y] – Y]
whereE[X] and E[Y] denote the expected value of X and Y
respectively. For a sampled dataset, this can be explicitly
written out as:

with = mean(X) and = mean(Y), where N is the dimension
of the dataset. The covariance matrix, the matrix F is a
matrix with elements Fi;j = cov(i; j) centers the data by
subtracting the mean of each sample vector.

With the covariance matrix, the eigenvectors and eigenvalues
are calculated; where the eigenvectors are unit eigenvectors
(i.e. lengths are 1). After the eigenvectors and the
eigenvalues are calculated, the eigenvalues are sorted in
descending order. This gives the researcher the components
in order of significance. The eigenvector with the highest
eigenvalue is the most dominant principal component of the

Paper ID: SUB158850 962

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 10, October 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

dataset (PC1). This expresses the most significant
relationship between the data dimensions. Therefore,
principal components are calculated by multiplying each row
of the eigenvectors with the sorted eigenvalues.

5. Methodology

The information gathered as variables were collected from
the questionnaire developed for this paper which was used to
identify the right methodology or software models that
respondents (software developers) used to develop software
for different sizes of projects.

Selected questions from the questionnaire were used as the
variables. Respondents were given choices from this
questions to select either 1 = Very Limited, 2 = Limited, 3 =
Adequate, 4 = Extensive and 5 = Very Extensive. The
variables were measured in the same units by carrying out
the PCA on the original data (without standardization) which
is called covariance-based PCA and the natural variance in
the variables counts directly in the PCA

The number of PCs is less than or equal to the number of
original variables. This transformation is defined in such a
way that the first PC has the largest possible variance (that is,
accounts for as much of the variability in the data as
possible), and each succeeding component in turn has the
highest variance possible under the constraint that it be
orthogonal to (i.e., uncorrelated with) the preceding
components.

This method permits the original set of p=10 variables to be
transformed to a new set of uncorrelated variables called PCs
as mentioned above. These new variables are linear
combinations of the original variables and each takes the
form:

Zj = a1jX1 + a2jX2+ a3jX3 + …+ apjXp
where (j = 1, ..., p)
where a1j, a2j, a3j,… apjis the jth eigenvector of the covariance
matrix P and X1, X2, X3, …, Xp are the variable values
recorded for each of the N samples (Respondents
organizations considered for the questionnaire).

The PCs are derived in decreasing order of importance where
the first PCs accounts for the largest amount of the total
variation in the original data. The variance of the jth
principal component is equal to λj (the jth eigenvalue of P);
therefore the percentage of the total variation accounted for
byZj is

For each of the principal components, Zj, we have a score
calculated for each of the N respondent organizations
considered by the researcher.

Multiple Regression using SPSS was used for the Modelling
techniques to ascertain the continuous type responses which
were used to establish combinations of variables that are
good responses from respondents based on the questions
which are coded in a binary type data (YES or NO), ordinal
data type and continuous data type. These type of data are

directly applicable to the statistical package (SPSS)
employed.

Two methods were employed to identify a set of variables
which were good prediction of the respondents‟ responses in
the modelling procedures. They were:
1) Stepwise variable selection: this is conducted by entering

and removing of variables from the model in a continuous
way until a final model is produced. The model contains
good prediction of the responses using a probability of
p=0.05 for variable entry and p=0.1 for variable removal.

2) Best subsets: these do not guarantee that the single model
produced is optimal but allow the researcher to look at
several nearly equivalent alternative models.

6. Result

The analysis of software development process was carried
out on different selected respondents out of which a sample
of 10 respondents were selected using the five selected
software development models based on factors as pointers
for the questionnaire (i.e. process, responsibility, practices
experiences and adoption, scope of use and their present
research).

The corresponding tables and figures below were selected
results from the large number of analyzed results for this
paper work.

Table 1 and Figure 9 shows a sample of the analysis while
Table 2 and Figure 10 shows the corresponding principal
component (PCs) for the analysis.

Table 1: Respondents responses on Capability Standards
Respondents‟ Rate of Software Development Model‟s Usage

(N = 10)
 Waterfall Spiral Unified

Process
Scrum XP

Very Limited 10 20 10 30 70
Limited 10 10 30 20 0
Average 40 20 40 40 20

Extensive 40 40 20 0 10
Very Extensive 0 0 0 10 0

Total 100 100 100 100 100

Figure 9: Respondents‟ responses on the most used software

development model (Question 2)

Table 2 and Figure 10 (i, ii and iii) shows the corresponding
principal component (PCs) for the analysis showing the
coefficients, it was observed that every software
development models with large positive values for PC1, PC2

Paper ID: SUB158850 963

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 10, October 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

and PC3 imply those respondents that believe to use that
particular software development models while those with
large negative values imply otherwise.

Table 2: Respondents responses on Capability Standards
Variable PC1 PC2 PC3 PC4 PC5

BiiWaterfall 0.141 -0.098 0.102 -0.069 0.050
BiiSpiral 0.171 -0.165 0.058 -0.013 0.112

Bii Unified Process 0.130 0.011 0.041 0.023 0.053
BiiScrum -0.099 -0.001 0.266 0.135 -0.069

BiiXP -0.170 0.117 0.014 -0.140 -0.036

Figure 10: Principal Component on Usage

Table 3 shows Respondents‟ Rate of Software Development
Model responses to Change and Figure 11 shows a sample of
the respondents‟ responses for the analysis while Table 4 and
Figure 12 (i, ii and iii) shows the corresponding principal
component (PCs) for the analysis

Table 3: Respondents responses on Capability Standards
Respondents‟ Rate of Software Development Model

responses to Change (N = 10)
 Waterfall Spiral Unified

Process
Scrum XP

Very Limited 10 10 20 10 0
Limited 60 50 30 30 20
Average 10 10 10 20 10

Extensive 10 20 20 30 40
Very Extensive 10 10 20 10 30

Total 100 100 100 100 100

Figure 11: Respondents responses on responding to change

Paper ID: SUB158850 964

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 10, October 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Table 4: Respondents responses on Capability Standards
Variable PC1 PC2 PC3 PC4 PC5

BviWaterfall -0.116 0.250 0.060 -0.013 0.059
BviSpiral -0.201 0.025 -0.084 -0.056 0.100

BviUnifiedProcess -0.247 -0.081 -0.019 -0.131 0.007
BviScrum 0.145 0.018 -0.193 -0.066 0.093

BviXP 0.141 -0.091 -0.047 0.075 -0.109

Figure 12 (i, ii, iii): Principal Component of Question 7

The above coefficients from Table 4 and corresponding
Figure 12 (i, ii and iii) shows the level of software
development models responding to change while developing
their software with large positive values implies those
respondents that believes that the model will respond to
change while developing while large negative values shows
otherwise. In this case, PC1 was the one that shows the
proper responses that support this question of models
responding to change which are the XP and Scrum models
alone. The remaining PCs do not indicate this.

7. Discussion

From the data analysis based on the variables collected from
respondents‟ responses and the subsequent principal
component analysis (PCA) conducted on the variables, it was
observed that in overall,
1) 75% of the respondents were in favor of Waterfall,

Unified Process (i.e. Iterative) and XP models in software
development usage.

2) Waterfall model and other heavyweight methodologies
has an 80% support on management control and
predefined plan structure.

3) 84% overall supported XP and Scrum models because of
their support customer involvement in the team work as
well as allowing changes to be done during development.

4) Respondents has an 87% support for the un-acceptance of
lightweight methodologies i.e. XP and Scrum methods;
for large scale developments due to their looseness of
development structure.

5) Heavy documentation was always a negative aspect for
the Waterfall, Spiral or Unified process models where
60% of respondents did not like the fact that heavy
documentation is needed for small scale development.

6) 90% overall scale believed that developer‟s expertise and
skillfulness is needed in order to ascertain the quality of
the software. They believed that a larger percentage of
unskilled software developers can pose more threats to
the software development than the outsiders.

7) In this regard, 75% of the overall decided to use in-house
software development models (i.e. RAD, FDD) that their
staffs are very familiar with than employing a new one
that might pose a threat to the development.

8) Hence, applying the right software development models
for the right scale or level of project (i.e. small, medium
or large) is of a paramount importance for any software
developers as this will guide them in producing
productive and suitable software for their organizations.

8. Conclusions

In conclusion, security considerations are very important
factors when software needs to be developed. Threats (i.e.
Denial of Service (DoS) attacks) must be identified using
Threat analysis which can be powered by structured analysis
approach. Attack trees and check lists can also be combined
to get the best results. It is also noted that threats are usually
analyzed using risk analysis method during the software
module specification phases of the software development
process lifecycle. The outcome points to the fact that it was
really hard for security testing to find any serious
weaknesses. Security testing is usually performed by
developers only in functional levels while more weight was
put on Quality Assurance (QA) steps which 75% of the
respondents believed that it is the work of their QA
department that deals with evaluation and quality assurance.
In this respect the importance of specification reviews and
systematic design for software development and security are
very vital in software development.

Furthermore, software developers need to put more emphasis
on the design of secure software system where the results are
always better than to put the same amount of effort into the
security testing. It was also establish that the best approach is
to have a designer and a tester for software quality issues in
the software system development. In spite of this, if the
responsibilities are not well defined, system security
engineering will not provide acceptable results based on the
commitment and responsibility issues of software
development and as such it would not be robust or secured.

Paper ID: SUB158850 965

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 10, October 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

References

[1] Allen, A.andJulia, H.(2001): The CERT Guide to
SystemandNetworkSecurityPractices.Boston,MA:
Addison-Wesle

[2] Beck,K.,(1999):“EmbracingchangewithExtremeProgra
mming”.IEEEComputer,Vol.32,IssueOctober.

[3] Beck,K.,(2004):“ExtremeProgrammingexplained:Embra
cechange.Reading,Mass.,Addison-Wesley,

[4] Boehm,B.,(1998)“ASpiralModelofSoftwareDevelopment
andEnhancement,”IEEEComputer,May199

[5] Ciampa,M.,(2007):“Security:A guideto
NetworkSecurityFundamentals“,CourseTechnology

[6] Dan,C.,(2002):SoftwareProductManagement:Managing
SoftwareDevelopmentfromIdeatoProducttoMarketingto
Sales.

[7] DepartmentofComputing(DOC),ImperialCollege,(2002):
“IntelligentDataAnalysisandProbabilisticInference”,
ImperialCollege,London,Departmentof Computing

[8] DRM
Associates(2002):"NewProductDevelopmentGlossary".h
ttp://www.npd-solutions.com/glossary.html.

[9] Fairley,R.E.(2005):,“SoftwareRiskManagement”,IEEE
Software,InstituteofElectricalandElectronicsEngineers,U
SA

[10] Gasser,M.,GoldsmithA.,andKaufmanC.,(1989):TheDigit
alDistributedSystemSecurityArchitecture”,Proc.12th
NationalComputerSecurityConference

[11] Lampson,B.,Abadi,M.,Burrows,M.,andWobber,E.(1992)
:“Authenticationindistributedsystems:Theoryand
practice”,ACMTrans.Comp.Systempp26-31

[12] Larman,C.,(2004):“Agile &Iterative Development:A
Manager’sGuide”.Addison-Wesley,2004.

[13] Pressman,R.S..(2005):SoftwareEngineering:Practitioner
'sApproach, McGraw-Hill,UnitedStatesofAmerica.

[14] Rising,L.andJanoff,N.S.,(2000): “TheScrumsoftware
developmentprocessforsmallteams”,IEEESoftware,Issue
17, pp.26-32

[15] Schwaber,K.andBeedle, M.,(2002):“Agile Software
Development with Scrum”, UpperSaddle River, NJ,
Prentice–Hall,1stEdition.

[16] Schwaber,K.andBeedle,M.,(2004):“AgileSoftwareDevel
opmentwithScrum”,1stEdition,UpperSaddleRiver,NJ,
Prentice–Hall.

[17] Sommerville,I..(2007):SoftwareEngineering,8thEdition,
PearsonEducationLimited

[18] Tipton,H.F.andKrauseMickey(2000):InformationSecurit
yManagement,4thedition,Auerbach,USA

[19] Williams,L.andCockburnA.,(2003)“AgileSoftwareDevel
opment:It’saboutFeedbackandChange,”IEEEComputer,
pp.39-43

Paper ID: SUB158850 966

http://www.npd-solutions.com/glossary.html
http://www.npd-solutions.com/glossary.html
http://www.npd-solutions.com/glossary.html

