
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 10, October 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

An Efficient Design of Advanced Encryption
Algorithm with FPGA

Soraisham Tarunjit Meitei
1
, M. Rajmohan

2

Department of Electronics and Communication Engineering, Hindustan University, Chennai – 603103, India

Abstract: A FPGA-based implementation of the Advanced Encryption Standard (AES) algorithm is presented in this paper. This

implementation is performed using a reconfigurable 32-bit MicroBlaze processor embedded in the FPGA chip using RS232 to interface

with PC to obtain a prototyped data encryption/decryption system. The iterative looping approach with block and key size of 128 bits,

lookup table implementation of S-box will performed. Simulation results, data summary results will be carried out with previous

reported designs.

Keywords: AES, FPGA, encryption, decryption, Rijndael, block cipher.

1. Introduction

Encryption [1] is a common technique to uphold image
security. Image and video encryption [2] are found in
various fields that include internet communication,
multimedia techniques, image processing systems, telecom
security and defense application.

The Advanced Encryption Standard– AES, announced by
the NIST (National Institute of Standards and Technology)
[1] became a standard in 1997 for a symmetric
cryptographic algorithm to be used to protect confidential
data in the USA. The algorithm should meet a better secure
and faster technique than the 3DES, using 128 bit
cryptograph blocks using 128, 192 and 256 bit keys. The
possibility of hardware implementation rather then software
implementation gives a better efficient technique. In 2000,
Rijndael [3] was chosen by a group of cryptographic experts
to be the most reliable technique. This algorithm was
designed by the Belgians Vincent Rijmen e Joan Daemen
[1][3].

The software implementation can prove vulnerable to
attacks by trespassers so hardware-based cryptography
providing more secure platform [2] in authentication of users
is suggested. This superior cryptographic work can provide
an effective and efficient security cryptanalysis attacks,
cyber-attacks and offline attacks.

This paper deals with an FPGA(Field programmable Gate
Array) implementation using a 32-bit Microblaze embedded
core processor for the AES encryption/decryption. The
iterative looping approach with block and key size of 128
bits using the lookup table implementation of S-box [7]
enhances our design. This method gives an ease in the
encryption/decryption process resulting in a very low
complexity architecture achieving low area as well as high
throughput.

Section II describes the AES algorithm, Section III provides
the hardware implementation of the AES design, Sections
IV gives the results obtained and Section V gives the
conclusion.

2. AES Rijndael

The AES algorithm [4][5] which is a symmetric block cipher
includes both encryption and decryption of data and
information. Encryption converts a root form of data called
the plain-text to an unintelligible form called the cipher-text.
The decryption operation does the reverse and makes the
original plain-text to be recovered.

The AES encryption and decryption process can be observed
using the encryption structure as in figure1 and figure 2
respectively. A state is generated in each stage of the design
flow and the matrix of bytes that is processed between many
stages, or rounds, gets modified in each stage. In the
Rijndael algorithm [3], the size of the matrix depends on the
block size being used. The matrix is composed of 4 lines and
Nb columns. Nb represents the number of bits in the block,
comprising the state. As our AES algorithm uses 128 bit
blocks, the state will be defined by 4 lines and 4 columns.

The cipher key which is a secret cryptographic key is used
by the key expansion module that generates a set of round
keys having 4 rows and Nk columns. Nr gives the number of
rounds and is a function of Nk and Nb. The key expansion
technique, thus, generates a series of round keys.

Accordingly as we choose the key size to be 128, 192 or
256, Nr will be 10, 12 and 14 and Nk be 4, 6 and 8,
respectively.

Paper ID: SUB158727 771

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 10, October 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 1: AES Encryption Structure

The encryption algorithm undergoes 4 different operations
i.e. AddRoundKey, SubBytes, ShiftRows and MixColumns.
In the last stage, the Mix Columns operation is suppressed.
The decryption algorithm performs the respective inverse
operations i.e. InvAddRoundKey, InvSubBytes,
InvMixColumns and InvShiftRows. Here the
InvMixColumns is suppressed on the last stage of decryption
algorithm [3][5]. The encryption/decryption algorithm is
explained by the individual operations as follows:

A. SubBytes

In this operation each state byte is replaced with the
corresponding values as per the S-box as indicated in Table
1. The values of the rows and columns of the state are used
to find the corresponding replacement values, which are
present in hexadecimal format. For the inverse operation
(decryption) i.e. InvSubBytes, an inverse S-Box(Table II) is
used. As an example, the S-box [7] outputs e0 for the input
value a0 (Table I - line a, column 0). On the same way, the
inverse S-Box outputs a0 for the input value e0 (Table II -
line e, Column 0). Figure 3 shows the operation of the
SubBytes.

Figure 2: AES Decryption Structure

Figure 3: SubBytes

Table 1: S-BOX

Y

 0 1 2 3 4 5 6 7 8 9 A b c d e f

X

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

Paper ID: SUB158727 772

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 10, October 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

B. ShiftRows

After the SubBytes operation the resulting matrix is shifted,
and the original matrix is replaced by the new matrix. In this
paper we use a left shift of one position in the 2nd row, two
shifts in the 3rd row and three shifts in the 4th row. The first
row is kept as it is. It is shown in figure 4.

Figure 4: ShiftRows

In the inverse operation, performed by InvShiftRows, the
corresponding rows shifted are to the right accordingly, in
the decryption algorithm.

C. MixColumns

This transformation operates on the state column-by-
column. The columns are treated as a four-term polynomial
over GF(28)(Galois Field) multiplied with a fixed
polynomial. The state bytes are treated as polynomials of
Galois Field algebra GF(28) [11] in this operation. In the
Figure 5, S depicts the initial state and S´ depicts the final
state, after the operation has been carried out.

Figure 5: MixColumns

Table 2: InvS-BOX
Y

 0 1 2 3 4 5 6 7 8 9 a b c d e F

X

0 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb
1 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb
2 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e
3 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25
4 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92
5 6c 70 48 50 Fd ed b9 da 5e 15 46 57 a7 8d 9d 84
6 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06
7 d0 2c 1e 8f Ca 3f 0f 02 c1 af bd 03 01 13 8a 6b
8 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73
9 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e
a 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b
b fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4
c 1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f
d 60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef
e a0 e0 3b 4d Ae 2a f5 b0 c8 eb bb 3c 83 53 99 61
f 17 2b 04 7e Ba 77 d6 26 e1 69 14 63 55 21 0c 7d

In the InvMixColumns, the multiplication uses the
corresponding inverse matrix denoted by C´ for the original
C matrix which was used in encryption. In the last round in
both encryption and decryption, this operation does not take
place.

 C =

D. AddRoundKey

This operation is performed in encryption as well as
decryption algorithm. XOR operation is performed by the
state and the round key which is generated from Key
expansion module. The key expansion technique will further
be discussed in later part of the paper. The corresponding
column-by-column for the state matrix and the round matrix
is performed XOR operation and is substituted in the state
matrix. The new byte is given by . This can
be seen in figure 6.

Figure 6: AddRoundKey

E. Key Expansion

The key expansion [1] is a routine used to generate a series
of Round Keys from the Cipher Key. Cipher key defines the
number of rounds in both, encryption and decryption
algorithms. The expansion technique is as shown in figure 7.
The expansion technique involves the use of three different
operations. The first operation, RotWord, takes a four-byte
word and performs a cyclic permutation. The second
operation, SubWord takes a four-byte input word and
applies an S-box to each of the four bytes to produce an
output word. The third operation involves XOR operations.

Figure 7: Key Expansion

 02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

C = C =

 0e 0b 0d 09
09 0e 0b 0d
0d 09 0e 0b
0b 0d 09 0e

Paper ID: SUB158727 773

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 10, October 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

3. Hardware Implementation

The AES design is implemented using a reconfigurable [6]
32-bit MicroBlaze processor embedded in the FPGA chip,
by using a parallel JTAG interface from the PC(Personal
Computer) to the FPGA and a serial RS232 to interface from
FPGA to PC to obtain a prototyped data encryption/
decryption system. This Microblaze is said to be a soft core
processor supporting around 900 LUTs, 32x32 general
purpose registers that have separate instructions for
accessing data and memory. It supports on-chip Block-RAM
as well as external memory and follows RISC (Reduced
Instruction Set Computers) architecture. The general block
diagram of a Microblaze processor is as shown in figure 8.

Figure 8: Microblaze processor

An EDK (Embedded Development Kit) tool, called Xilinx
Platform Studio has been used to implement this design.
VHDL is used for configuration of the hardware and
Impulse C for software, which is used to drive the hardware
design. Efficiency is observed using a Spartan-3 XC3S200
FPGA.

The use of EDK in the AES design enables the processor IP
configuration in the database and lowers the complexity in
architecture providing an ease in design platform as
compared to the Xilinx ISE. The Block diagram for AES
implementation in FPGA using EDK software is shown in
figure 9 in parallel with Xilinx ISE design flow.

For SubByte lookup table having multiplications and
additions (XORs) two 512×2 SRAMs (Static RAMs) is
proposed in slice area for S-BOX.

All the modules were independently tested and
characterized, and hence they can be used in any
combination as desired, as per the application requirements.
Tests were performed on each and every block using an
encryption - decryption AES set of 128 bits that was
assembled in a Xilinx Spartan-3 FPGA device.

Figure 9: Block diagram for AES implementation in FPGA

using EDK software

4. Results Analysis

Xilinx ISE version 10.1i was used for the design flow and
the results quoted are from post place and route figures
including all input and output delays. The new designs were
coded in VHDL and validated using ISE simulator.

Using Xilinx 10.1i the encryption result is observed for:
Plaintext = 123456h
Key Value = 123h

The Cipher Text is found to be
B1B10EDC18EE9518862CC9C963636240h
The simulation result is as shown in figure 10.

Figure 10: AES Encryption Simulation

Paper ID: SUB158727 774

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 10, October 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Now the same tool the decryption value for the cipher text is
observed.
Plaintext= B1B10EDC18EE9518862CC9C963636240h
Key Value = 123h
Cipher Text is found to be 123456h, which is our input
value. The simulation result is as shown in figure 11.

Figure 11: AES Decryption Simulation

The hardware implementation was performed using
Microblaze soft core processor embedded in the Spartan-3
XC3S200 through Xilinx Platform Studio, an
EDK(Embedded Development Kit) tool. All peripherals are
implemented on the FPGA(Field Programmable Gate Array)
fabric. The reference clock frequency and the processor bus
clock frequency inputs were set to 50Mhz and the maximum
frequency obtained was 72.495Mhz. Also the resulted
device utilization data indicating the availability and
consumed area is as shown in table III.

Table 3: Device utilization for Spartan-3 XC3S200
Resource type Used Available Percent

Slices 712 1920 37
Slice Flip Flop 898 3840 23
4 input LUTs 1377 3840 35

IOs 2296 NA NA
Bonded IOBs 0 173 0
MULT18x18s 3 12 25

Also the total power consumption is obtained as in table IV
below

Table 4: Power Analysis
Name Value

(W)
Used Total

Available
Utilization

Clocks 0.00508 3 --- ---
Logics 0.00756 2379 3840 62.0
Signals 0.01043 3431 --- ---

I/Os 0.01298 30 97 30.9
BRAMs 0.00000 4 12 33.3
DCMs 0.03663 1 4 25.0

MULTs 0.00055 3 12 25.0
Total Power 0.11483

5. Conclusion

The article presented a very efficient approach of
encryption/decryption cryptography which can give various
applications. The algorithm has been designed for a 128 bit
block size which can be used with cipher keys length 128,
192 and 256 bits. The design is implemented using a soft
core Microblaze processor with Xilinx Platform Studio, an
EDK tool.

Xilinx Spartan-3 XC3S200 was chosen to conduct the
performance comparison of our work with others [4][5].
Xilinx ISE 10.1 was the software used to run the synthesis,
and Xilinx Platform Studio was used for hardware
implementation. Area was greatly reduced and also an ease
in hardware implementation process was experienced.This
approach presented an efficient AES cryptography hardware
structure can be customized to a wide range of applications.

References

[1] FIPS FIPS-197, Federal Information Processing

Standards Publication FIPS-197, Advanced Encryption
Standard (AES),
http://csrc.nist.gov/publications/fips/fips197/fips-
197.pdf, 1999.

[2] Vishnu, M.B. ; Tiong, S.K. ; Zaini, M. ; Koh,S.P.
“Security enhancement of digital motion image
transmission using hybrid AES-DES algorithm” 14th
Asia-Pacific Conference on Communications, 2008.
APCC 2008. Publication Year: 2008 , Page(s):1-5 Cited
by: Papers (2).

[3] Daemen J., and Rijmen V, "The Design of Rijndael:
AES-the Advanced Encryption Standard", Springer-
Verlag, 2002.

[4] Mr. Atul M. Borkar, Dr. R. V. Kshirsagar and Mrs. M.
V. Vyawahare, “FPGA Implementation of AES
Algorithm”, International Conference on Electronics
Computer Technology (ICECT), pp. 401-405, 2011.

[5] Trang Hoang; Van Loi Nguyen, “An Efficient FPGA
Implementation of the Advanced Encryption
Algorithm” Computing and Communication
Technologies, Research, Innovation, and Vision for the
Future (RIVF), 2012 IEEE RIVF International
Conference on Publication Year: 2012 , Page(s): 1-4
Cited by: Papers (3).

[6] Tessier, R., and Burleson, W., “Reconfigurable
computing for digital signal processing: a survey”,
J.VLSI Signal Process, 28, (1-2), pp.7-27, 2001.

[7] Ahmad, N.; Hasan, R.; Jubadi, W.M; “Design of AES
S-Box using combinational logic optimization”, IEEE
Symposium on Industrial Electronics &
Applications(ISIEA), pp. 696-699, 2010.

[8] Alex Panato, Marcelo Barcelos, Ricardo Reis, “An IP of
an Advanced Encryption Standard for Altera Devices”,
SBCCI 2002, pp. 197-202, Porto Alegre, Brazil, 9 and
14 September 2002.

[9] Otávio S. M. Gomes, Robson L. Moreno and Tales C.
Pimenta, “A Fast Cryptography Pipelined Hardware
developed in FPGA with VHDL” Ultra Modern
Telecommunications and Control Systems and
Workshop(ICUNT), 3rd International conference, 2011,
Page(s): 1 – 6, 2011.

[10] J. Granado-Criado, M. Vega-Rodriguez, J. Sanchez-
Perez, and J. Gomez-Pulido,“A New Methodology to
Implement the AES Algorithm Using Partial and
Dynamic Reconfiguration,” Integration, the VLSI J.,
vol. 43, no. 1, pp. 72-80,2010.

[11] Klima, R. E., Sigmon, N., and Stitzinger, E.
Applications of abstract algebra with Maple. CRC
Press, Boca Raton, FL. 2000.

[12] Dur-e-Shahwar Kundi, Saleha Zaka, Qurat-Ul-Ain and
Arshad Aziz, "A Compact AES Encryption Core on

Paper ID: SUB158727 775

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Vishnu,%20M.B..QT.&searchWithin=p_Author_Ids:38189827300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Tiong,%20S.K..QT.&searchWithin=p_Author_Ids:37543107100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Zaini,%20M..QT.&searchWithin=p_Author_Ids:38188523500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Koh,%20S.P..QT.&searchWithin=p_Author_Ids:37405113200&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4773822&queryText%3Daes+image
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4773822&queryText%3Daes+image
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4768556
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4768556
http://ieeexplore.ieee.org/xpl/abstractCitations.jsp?tp=&arnumber=4773822&queryText%3Daes+image
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Trang%20Hoang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Van%20Loi%20Nguyen.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6169845&queryText%3DAn+efficient+FPGA+implementation+of+the+Advanced+Encryption+Standard+algorithm
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6169845&queryText%3DAn+efficient+FPGA+implementation+of+the+Advanced+Encryption+Standard+algorithm
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6169845&queryText%3DAn+efficient+FPGA+implementation+of+the+Advanced+Encryption+Standard+algorithm
http://ieeexplore.ieee.org/xpl/abstractCitations.jsp?tp=&arnumber=6169845&queryText%3DAn+efficient+FPGA+implementation+of+the+Advanced+Encryption+Standard+algorithm

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611

Volume 4 Issue 10, October 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Xilinx FPGA", 2nd IEEE International Conference on
Computer, Control & Communication (IEEE IC4-2009)
Karachi, Pakistan Vol:1 pp:1-4, 2009.

[13] Arshad Aziz and Nassar Ikram, "Memory efficient
implementation of AES S-boxes on FPGA", Journal of
Circuits, Systems, and Computers, Vol. 16, No.4 (2007)
603--611.

Paper ID: SUB158727 776

