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Abstract: In this paper we consider a special problem of mixed type (0;0,2) interpolationon on the two sets of the nodes of Laguerre
polynomial in which one set consists of the nodes of LX(x) while the other are nodes of Lk~1(x) . We prove the existence, uniqueness and
explicit representation of fundamental polynomials on infinite interval.
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1. Introduction

In 1975 Pal [10] proved that for a given arbitrary numbers
{a;}~, and {B;}'=] there exists a unique polynomial of
degree < 2n-1 satisfying the condition:

(LD Ry(§) =a;,i=1(Dn, R,(E) =p;,i=11n—-1
and an initial condition R,,(a) = 0, where a is a given point
different from the nodal points . Balazs. J.[2][3] and Szili
[13] have studied problems for weighted (0,2) interpolation
.T.F. XIE [15],Mathur P. and Datta S. [8] and many others
mathematicians [1][4][6][7][9][11][12][14] have discussed
about interpolation problems when the values of the function
and its consecutive derivatives are prescribed at the given set
of the points. Lénard M. [5] investigated the Pal — type
interpolation problem on the nodes of Laguerre abscissas. In
Pal — type interpolation the derivative values are prescribed
at the zeroes of w (x) while the function values are
prescribed at the zeroes of w,(x) = (x —x1) ... (x — x,,) .
The object of this paper is to study a special problem of
mixed type weighted (0;0,2) interpolation on the nodes of
Laguerre polynomial .In this paper we consider the problem
if {&}7, and {&}_; be the two sets of interscaled nodal
points

(12)0=8p <& <& < <&pg <& <& <0

on the interval [0,0) . We seek to determine a polynomial

R,(x) of minimal possible degree 3n+k satisfying the

interpolatory conditions:
(13) Ry (&) = gi,

gi5 fori=1(1)n

R.($) = gi (WR,)" (§) =

ARV E) =9Y,j=01,.. k

where g;, g;, g; and géj ) are arbitrary real numbers. In
general the problem is not regular when Laguerre
polynomials Lglk)(x) and Lglk_l)(x) have zeroes {&;}i-; and
{& 31, respectively and x, = 0 but it becomes regular with
weight function w(x) = e */2x*/2. We prove existence,
uniqueness and explicit representation of fundamental
polynomials.

2. Preliminaries

In this section we shall give some well-known results which
are as follws:

As we know that the Laguerre polynomial is a constant
multiple of a confluent hypergeometric function so the
differential equation is given by

QD xD?*LE(x)+ (1 4+ k —x)DLE(x) + nLlk(x) =0
@2 147 @ = -1, @)

Also using the identities
2.3)137(x) = LI (@) - LI ()
2.4) xL% () = nL® () — (n + LY, ()

n—

We can easily find a relation
d 1, =
(2.5) [xkLE ()] = (n + K)x* L%V ()

conditions
define

By the following
normalization we

Lg‘)(x),for k>-1

of orthogonality and
Laguerre polynomial

(2.6)
fowe_"kaglk)(x)L%()(x)dx =Tk+1 (":k)&ml nm=
012....

)
@7 L) = i o("75) :)

The fundamental polynomials of Lagrange interpolation are
given by

Wa)
k — Yij
L8 () (e—x;)

28) () =

(k—1)
QL@ =—2—=4,
Ly " () (x=y;)
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(o
, 1)
Q210" () = Ly ) i-yp) i,j=1()n
Gy
2yj
@.11)
L (k=yi)
———n i l li#]
i (y.)zj oo o Yo ij =
T w
l
1(Dn
Q) Q)
' 1 Ly~ 0j) o)) .
2.12) L(y;) = ) o 0 =1(1n
(2.12) [; () (YJ—XJ)[L,(J‘) w1 (- ] J @

3. New Result

Theorem 1: For n >1 fixed integer let {g;}/—, {9{}i=1,
{9;7}=1 and, {g; )}]’-‘;0 are arbitrary real numbers then there

ex1sts a unique polynomial R,(x) of minimal possible
degree < 3n+k on the nodal points (1.2) satisfying the
condition (1.3) and (1.4).

The polynomial R,(x) can be written in the form (3.1)
Ry(x) = Xj-1 Uj(x)g; + Xja V() gj + X W) g;™ +
J=0kC(X)g00q)

Where U;(x), V;(x), W;(x) and
polynomials of degree < 3n+k
given by
(32) Y @) =

G (x) are fundamental

1

k+1 (k=1)
m[x b CLy 7 (x)

HLOLE D) o LE ©-lx—mHo -2 @)
oL @ (t=x))?

dt]

B3V ) = J D : L (O ()

L o1
nx"LﬁZ‘)(x)Lﬁf‘ 1)(x) x (r—yJ>LEl")(r>+L;’“”(r>
AN 0 (t-yj)?

dt]

yj/Zka(k)(X)L(k—l)(x) x
34 W (x) = =2 n :
( ) J Zylsk/z[Lglk)(yl_)]Z 0 7J

(3.5)
G0 =

p; 0 L @[V @]+ 1P LV )l ~

218 @ 0+a; L ©

) o dt]
,j=01,.., k-1

— 1 k() (k=1) 2
(3-6) Ck (x) - (";k)k![lek_l)(O)]Z x Ln (x)[Ln (x)]

Where U;(x), V;(x),W;(x)and C;(x) are fundamental
polynomials of degree < 3n+k . p;(x) and q;(x) are
polynomials of degree at most k-j-1 . ¢ is defined in (4.21)
and 7 is deﬁned as:

3.7)n —(k+y) 12( +y]2)——(13y] +7)——ny}]

4. Proof of Theorem 1

Let U; (x), V; (x), W; (x) and C; (x) are polynomials of degree
< 3n+k satisfying condltlons 4.1), 4.2), (4.3) and (44)
respectively.

Uj(xi) = 61
Ui(y) =0
j Vi .
4.1) [e_"/zxk/zUj(x)];:yi =0,i=11Dnand!l =
Uj(l)(o) =0
0,1,..,k
W(xi) =0
V. (y;) = 6y .
(42) ] [e_x/zxk/zv}(x)];:y = 0,l = 1(1)7’1 and l =
P =0
0,1,..,k
Wj(xi) =0
W}(J’i) =0
(4.3) 4 [e"‘/zxk/zl/lj-(x)];:yi =6
m(l) 0) =0
Ci(x) =0
Gy =0
(44) [e—x/zxk/zck (x)];:y =0,i= 1(1)71 andl =
C;ED(O) =06k

01,...k

To determine U; (x) let

4.5)

Ui (x) =

G (LY V() + ,
-1) gy (-1

G O LV [ (t)ﬂci: ek © 4t

)

Where Cy, C;, C3 and C, are constants . [;(x) is defined in

(2.8) . As U;(x) is a polynomial of degree < 3n+k so the

integrand in (4.5) must be a polynomial of at most degree n

which implies

(46) L™ (6) +[C3 + Cat = )Ly~ (€) = 0

By using (2.2), (2.3), (2.8) we determine

(47)Cs=—1,C, = ﬂ C, !

= LD D)
X ()

Since U; (x) satisfies the condmons (4.1) by which we obtain
(4.8)C; =

x]]-‘Llr‘l(yj)Lg() (xj)Lglk 1)(xj)

Hence we find the first fundamental polynomial U; (x)of
degree < 3ntk

To find second fundamental polynomial let

4.9) V(%) = Csx* 1LY )21 (x) +

) e~ 1) < (t—yLP® + 6L 1)(t)
+C6x Ln (x)Ln (x).[g (t_y])z
Where Cs, Cg, C; and Cg are arbitrary constants. Since this is
a polynomial of degree < 3n+k therefore the expression
under the integral sign must be a polynomial of degree n,
which implies
“4.10)¢;, =1
By using (2.9), first and second condition of (4.2) we get

1
411 Cs = 55—
( ) 5 yj(k+1)[L£[k)(y]‘)]2
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Using third condition of (4.2) we get
(4.12) Cs = 1
6 yj(k+1)[L$1k)(y1')]zL$1k 1) (yl)

k
Gy 2 (6 +3,2) =5 (13 +7) = Sy

where n =

Hence we find the first fundamental polynomial V;(x)of
degree < 3n+k

Again let

@.13) W (x) = Cex* L LY ) [T (D)t

Where Cy is a constant,l’(t) is defined in (2.9) .Wj(x) is
polynomial of degree < 3n+k satisfying the conditions (4.3)
by which we obtain

vjl2
(4.14) Cg = — —7

2P 1

Hence we find the third fundamental polynomial Wj(x) of
degree < 3nt+k

To find (i(x), we assume ((x) for fixed

je{0,,.......,k — 1} in the form

@.15) G () = p; %/ L LY T @) +

L Ly ™ (@) gn (1)

Where p; (x) and g, (x) are polynomials of degree k-j-1 and
n respectively . Now it is clear that C}(l)(O) =0for(l=

0, ... .. ,j — 1) and since Lglk)(xi) =0 and lek_l)(yi) =0 we
get

G(x;) =0and G;(y;) =0 fori=1(1)n. The coefficient
of the polynomial p; (x) are calculated by the system

(4.16) G0(0) = L [, o LO WLV _, =
81y (L=Jy ek —1)

now from the equation Cj(k)(O) = 0 we get

@.17) ¢ = g,(0) =

-1 ak 10O (k=1) (.12
. ]
(":k)k!Lg‘_l)(O) dxk [p] (x)x Ln (X)[Ln (x)] ]x=0

Now using the condition [e_"/zxk/ij (x)];zyi = 0 of (4.7),
we get ’

(4.18) g, (7)) = =Y L™ py O)

Which implies g, (x) as follows

/ LD 0y )b L% D)
(4.19) gn(x) = — ’ xk—jl

Where g;(x) is a polynomial of degree k-j-1 and function
gn (x) will be a polynomial iff forr = 0,1,...,k —j — 1

(4.20) L1157 Gopy () + 4 COLE D@m= 0

The coefficients of q;(x) are uniquely calculated by this
system . now integrating (4.19) we get

(421) g, () = ga(0) + J; g (B)dt

Using (4.15) and (4.17) we obtain G (x) of degree < 3n+tk
satisfying the conditions (4.4)

Uniqueness and Existence

As R, (x) in (3.1) satisfies the conditions (1.3) and (1.4) so
the existence part is proved. Now we seek to determine a
polynomial R, (x) of minimal possible degree < 3n+k

satisfying the conditions (4.22) for i =1(1)n and [ =
0,1,..,k

I( Sn(xi) =0

Sn(yi) =0
4.22 _ " =0,i=11)nand!l =
( ) [e x/2xk/25n(x)]XZYi ( )
| sio=o0
01,..,k

Let us consider

(4.23) 5,00 = x* LY )Ly ™ ()5, (x)
Where s,, (x) is a polynomial of at most degree n. now from
the third condition of (4.22) we have

(4.24)
[e ™ /2228, ()]e=y, =

. 5% k1) ’
2e 2y 2L LYY s, () = 0

This implies s, (y;) = 0 fori=1(1)n so that s,(x) =0
hence s, (x) = c . so

(4.25) S, (x) = ¢ x* 19 ) L%V (x), but

dks, k k-1

(4.26) =2 (0) = ¢ ("TF)k! LR (0) = 0

Which implies ¢ =0 as Lglk_l)(O) # 0 hence S,(x) =0
which completes the proof of the uniqueness.
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