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Abstract: In this paper we consider a special problem of mixed type (0;0,2) interpolationon on the two sets of the nodes of Laguerre 

polynomial in which one set consists of the nodes of 𝑳𝒏
𝒌(x) while the other are nodes of 𝑳𝒏

𝒌−𝟏(x) . We prove the existence, uniqueness and 

explicit representation of fundamental polynomials on infinite interval. 
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1. Introduction  
 
In 1975 Pál [10] proved that for a given arbitrary numbers 
{𝛼𝑖}𝑖=1

𝑛  and {𝛽𝑖}𝑖=1
𝑛−1 there exists a unique polynomial of 

degree ≤ 2n-1 satisfying the condition: 
 
(1.1) 𝑅𝑛 𝜉𝑖 = 𝛼𝑖 , 𝑖 = 1 1 𝑛,  𝑅𝑛 𝜉𝑖 = 𝛽𝑖 , 𝑖 = 1 1 𝑛 − 1 
and an initial condition 𝑅𝑛 𝑎 = 0, where 𝑎 is a given point 
different from the nodal points . Balázs. J.[2][3] and Szili 
[13] have studied problems for weighted (0,2) interpolation 
.T.F. XIE [15],Mathur P. and Datta S. [8] and many others 
mathematicians [1][4][6][7][9][11][12][14] have discussed 
about interpolation problems when the values of the function 
and its consecutive derivatives are prescribed at the given set 
of the points. Lénárd M. [5] investigated the Pál – type 
interpolation problem on the nodes of Laguerre abscissas. In 
Pál – type interpolation the derivative values are prescribed 
at the zeroes of 𝜔′ 𝑥  while the function values are 
prescribed at the zeroes of 𝜔𝑛 𝑥 =  𝑥 − 𝑥1 … (𝑥 − 𝑥𝑛) . 
The object of this paper is to study a special problem of 
mixed type weighted (0;0,2) interpolation on the nodes of 
Laguerre polynomial .In this paper we consider the problem 
if {𝜉𝑖}𝑖=1

𝑛  and {𝜉𝑖
∗}𝑖=1

𝑛  be the two sets of interscaled nodal 
points 

(1.2) 0 ≤ 𝜉0 < 𝜉1
∗ < 𝜉1 < ⋯ < 𝜉𝑛−1 < 𝜉𝑛

∗ < 𝜉𝑛 < ∞  
on the interval [0,∞) . We seek to determine a polynomial 
𝑅𝑛(𝑥) of minimal possible degree 3n+k satisfying the 
interpolatory conditions: 
 (1.3) 𝑅𝑛 𝜉𝑖 = 𝑔𝑖 , 𝑅𝑛(𝜉𝑖

∗) = 𝑔𝑖
∗, (𝜔𝑅𝑛)′′ (𝜉𝑖

∗) =
𝑔𝑖
∗∗, 𝑓𝑜𝑟 𝑖 = 1 1 𝑛  

 (1.4) 𝑅𝑛
(𝑗 ) 𝜉0 = 𝑔0

(𝑗 )
, 𝑗 = 0,1, … , 𝑘 

 where 𝑔𝑖 , 𝑔𝑖
∗, 𝑔𝑖

∗∗and 𝑔0
(𝑗 )

 are arbitrary real numbers. In 
general the problem is not regular when Laguerre 
polynomials 𝐿𝑛

(𝑘)
(𝑥) and 𝐿𝑛

(𝑘−1)
(𝑥) have zeroes {𝜉𝑖}𝑖=1

𝑛  and 
{𝜉𝑖

∗}𝑖=1
𝑛  respectively and 𝑥0 = 0 but it becomes regular with 

weight function 𝜔 𝑥 = 𝑒−𝑥/2𝑥𝑘/2. We prove existence, 
uniqueness and explicit representation of fundamental 
polynomials. 
 
 
 
 

2. Preliminaries 
  
In this section we shall give some well-known results which 
are as follws: 
As we know that the Laguerre polynomial is a constant 
multiple of a confluent hypergeometric function so the 
differential equation is given by 
 
(2.1) 𝑥𝐷2𝐿𝑛

𝑘 (𝑥) +  1 + 𝑘 − 𝑥 𝐷𝐿𝑛
𝑘 (𝑥) + 𝑛𝐿𝑛

𝑘 (𝑥) = 0 
 
(2.2) 𝐿𝑛

 𝑘−1 ′ (𝑥) = −𝐿𝑛−1
(𝑘)

(𝑥) 
 
Also using the identities 
(2.3) 𝐿𝑛

 𝑘 (𝑥) = 𝐿𝑛
 𝑘+1 (𝑥) − 𝐿𝑛−1

 𝑘+1 (𝑥) 
 
(2.4) 𝑥𝐿𝑛

 𝑘 ′ (𝑥) = 𝑛𝐿𝑛
 𝑘 (𝑥) − (𝑛 + 𝑘)𝐿𝑛−1

 𝑘 (𝑥) 
 
We can easily find a relation 
 
(2.5) 𝑑

𝑑𝑥
 𝑥𝑘𝐿𝑛

𝑘 (𝑥) =  𝑛 + 𝑘 𝑥𝑘−1𝐿𝑛
 𝑘−1 (𝑥) 

 
By the following conditions of orthogonality and 
normalization we define Laguerre polynomial 
𝐿𝑛
 𝑘  𝑥 , 𝑓𝑜𝑟 𝑘 > −1 

 
(2.6) 
 𝑒−𝑥𝑥𝑘𝐿𝑛

 𝑘  𝑥 𝐿𝑚
 𝑘  𝑥 𝑑𝑥 = Γ𝑘 + 1  𝑛+𝑘

𝑛
 𝛿𝑛𝑚  𝑛,𝑚 =

∞
0

0,1,2,….. 
 
 
(2.7) 𝐿𝑛

 𝑘  𝑥 =   𝑛+𝑘
𝑛
 

(−𝑥)𝜇

𝜇!

𝑛
𝜇=0  

 
The fundamental polynomials of Lagrange interpolation are 
given by 
 

(2.8) 𝑙𝑗  𝑥 =
𝐿𝑛
 𝑘  𝑥 

𝐿𝑛
 𝑘 ′

 𝑥𝑗   𝑥−𝑥𝑗  
= 𝛿𝑖,𝑗  

 

(2.9) 𝑙𝑗∗ 𝑥 =
𝐿𝑛
 𝑘−1  𝑥 

𝐿𝑛
 𝑘−1 ′

 𝑦𝑗   𝑥−𝑦𝑗  
= 𝛿𝑖,𝑗  
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(2.10) 𝑙𝑗∗
′
(𝑦𝑗 ) =

 
 

 𝐿𝑛
 𝑘−1 ′

(𝑦𝑖)

𝐿𝑛
 𝑘−1 ′

 𝑦𝑗  (𝑦𝑖−𝑦𝑗 )
 𝑖 ≠ 𝑗

−
(𝑘−𝑦𝑗 )

2𝑦𝑗
 𝑖 = 𝑗

  𝑖, 𝑗 = 1 1 𝑛 

 
 
(2.11) 

𝑙𝑗
∗′′ (𝑦𝑗 ) =

 
 
 

 
 −

𝐿𝑛
 𝑘−1 ′

(𝑦𝑖)

𝐿𝑛
 𝑘−1 ′

 𝑦𝑗  (𝑦𝑖−𝑦𝑗 )
 [
 𝑘−𝑦𝑖 

𝑦𝑖
+

2

(𝑦𝑖−𝑦𝑗 )
 ] 𝑖 ≠ 𝑗

(𝑘−𝑦𝑗 )2−(𝑛𝑦𝑗−𝑘)

3𝑦𝑗
2  𝑖 = 𝑗

  𝑖, 𝑗 =

1 1 𝑛 
 
 

(2.12)  𝑙𝑗′(𝑦𝑗 ) =
1

 𝑦𝑗−𝑥𝑗  
[
𝐿𝑛
 𝑘 ′

(𝑦𝑗 )

𝐿𝑛
 𝑘 ′

(𝑥𝑗 )
−

𝐿𝑛
(𝑘)

(𝑦𝑗 )

𝐿𝑛
 𝑘 ′

(𝑥𝑗 ) 𝑦𝑗−𝑥𝑗  
], 𝑗 = 1 1 𝑛 

 
3. New Result 
 

Theorem 1: For n >1 fixed integer let {𝑔𝑖}𝑖=1
𝑛 , {𝑔𝑖

∗}𝑖=1
𝑛 , 

{𝑔𝑖
∗∗}𝑖=1

𝑛  and, {𝑔0
(𝑗 )

}𝑗=0
𝑘  are arbitrary real numbers then there 

exists a unique polynomial 𝑅𝑛(𝑥) of minimal possible 
degree ≤ 3n+k on the nodal points (1.2) satisfying the 
condition (1.3) and (1.4).  
 
The polynomial 𝑅𝑛(𝑥) can be written in the form (3.1) 
𝑹𝒏(𝒙) =  𝑼𝒋(𝒙)𝒈𝒋

𝒏
𝒋=𝟏 +  𝑽𝒋 𝒙 𝒈𝒋

∗ +𝒏
𝒋=𝟏  𝑾𝒋(𝒙)𝒈𝒋

∗∗ +𝒏
𝒋=𝟏

𝒋=𝟎𝒌𝑪𝒋(𝒙)𝒈𝟎(𝒋) 
 
Where 𝑈𝑗  𝑥 , 𝑉𝐽 (𝑥 ), 𝑊𝑗  𝑥  and 𝐶𝑗 (𝑥) are fundamental 
polynomials of degree ≤ 3n+k  
given by 
 (3.2) 𝑈𝑗 (𝑥) =  

1

𝑥𝑗
 𝑘+1 

𝐿𝑛
 𝑘−1 

 𝑥𝑗  
[𝑥𝑘+1𝑙𝑗  𝑥 𝐿𝑛

 𝑘−1  𝑥  

 − 
𝑥𝑘𝐿𝑛

(𝑘)
 𝑥 𝐿𝑛

(𝑘−1)
 𝑥 

𝐿𝑛
𝑘  𝑦𝑗  𝐿𝑛

(𝑘)′
(𝑥𝑗 )

  
𝑥𝑗𝐿𝑛

(𝑘−1)′
 𝑡 −[𝑥𝑗−(𝑛+𝑘)(𝑡−𝑥𝑗 )]𝐿𝑛  

(𝑘−1)
 𝑡 

(𝑡−𝑥𝑗 )2

𝑥

0
𝑑t] 

 
(3.3) 𝑉𝑗  𝑥 =

1

𝑦𝑗
 𝑘+1 

[𝐿𝑛
 𝑘 

(𝑦𝑗 )]2
[𝑥𝑘+1[𝐿𝑛

 𝑘  𝑥 ]2𝑙𝑗
∗(𝑥)  

 + 𝜂𝑥 𝑘𝐿𝑛
 𝑘  𝑥 𝐿𝑛

 𝑘−1  𝑥 

𝐿𝑛
 𝑘−1 ′

(𝑦𝑗 )
  

(𝑡−𝑦𝑗 )𝐿𝑛
 𝑘  𝑡 +𝐿𝑛  

(𝑘−1)
 𝑡 

(𝑡−𝑦𝑗 )2

𝑥

0
𝑑𝑡] 

 

(3.4) 𝑊𝑗  𝑥 = −
𝑒
𝑦𝑗 /2

𝑥𝑘𝐿𝑛
 𝑘 

(𝑥)𝐿𝑛
 𝑘−1 

(𝑥)

2𝑦
𝑗
3𝑘/2

[𝐿𝑛
 𝑘 

(𝑦𝑗 )]2
 𝑙𝑗

∗(𝑡)𝑑𝑡
𝑥

0
 

 
(3.5) 
𝐶𝑗  𝑥 =

 𝑝𝑗  𝑥 𝑥
𝑗𝐿𝑛

 𝑘 (𝑥) 𝐿𝑛
 𝑘−1  𝑥  

2
+𝑥𝑘𝐿𝑛

 𝑘 (𝑥)𝐿𝑛
 𝑘−1 (𝑥)[𝑐𝑗 −

 
𝐿𝑛
 𝑘 ′  𝑡 𝑝𝑗 (𝑡)+𝑞𝑗 (𝑡)𝐿𝑛

 𝑘 
(𝑡)

𝑡𝑘−𝑗 𝑑𝑡]
𝑥

0
 

, 𝑗 = 0,1, … , 𝑘 − 1 
(3.6) 𝐶𝑘(𝑥) =

1

 𝑛+𝑘
𝑘  𝑘![𝐿𝑛

 𝑘−1  0 ]2
𝑥𝑘𝐿𝑛

 𝑘 (𝑥)[𝐿𝑛
 𝑘−1 (𝑥) ]2 

 Where 𝑈𝑗  𝑥 , 𝑉𝑗 (𝑥),𝑊𝑗  𝑥 and 𝐶𝑗 (𝑥) are fundamental 
polynomials of degree ≤ 3n+k . 𝑝𝑗  𝑥  and 𝑞𝑗 (𝑥) are 
polynomials of degree at most k-j-1 . 𝑐𝑗  is defined in (4.21) 
and 𝜂 is defined as: 
(3.7) 𝜂 =

1

(𝑘+𝑦𝑗 )
[

1

12
 𝑘2 + 𝑦𝑗

2 −
𝑘

6
 13𝑦𝑗 + 7 −

7

3
𝑛𝑦𝑗 ] 

4. Proof of Theorem 1 
 
Let 𝑈𝑗  𝑥 , 𝑉𝑗 (𝑥), 𝑊𝑗 (𝑥) and 𝐶𝑗 (𝑥) are polynomials of degree 
≤ 3n+k satisfying conditions (4.1), (4.2), (4.3) and (4.4) 
respectively. 

 (4.1) 

 
 
 

 
 

𝑈𝑗  𝑥𝑖 = 𝛿𝑖,𝑗
𝑈𝑗  𝑦𝑖 = 0

[𝑒−𝑥/2𝑥𝑘/2𝑈𝑗  𝑥 ]𝑥=𝑦𝑖
′′

𝑈𝑗
 𝑙  0 = 0

 = 0, 𝑖 = 1 1 𝑛 𝑎𝑛𝑑 𝑙 =

0,1, … , 𝑘  

 (4.2) 

 
 
 

 
 

𝑉𝑗  𝑥𝑖 = 0

𝑉𝑗  𝑦𝑖 = 𝛿𝑖,𝑗

[𝑒−𝑥/2𝑥𝑘/2𝑉𝑗  𝑥 ]𝑥=𝑦 𝑖
′′

𝑉𝑗
 𝑙  0 = 0

 = 0, 𝑖 = 1 1 𝑛 𝑎𝑛𝑑 𝑙 =

0,1, … , 𝑘  

 (4.3) 

 
 
 

 
 

𝑊𝑗  𝑥𝑖 = 0

𝑊𝑗  𝑦𝑖 = 0

[𝑒−𝑥/2𝑥𝑘/2𝑊𝑗  𝑥 ]𝑥=𝑦𝑖
′′

𝑊𝑗
 𝑙  0 = 0

 = 𝛿𝑖,𝑗   

 (4.4) 

 
 
 

 
 

𝐶𝑘 𝑥𝑖 = 0

𝐶𝑘 𝑦𝑖 = 0

[𝑒−𝑥/2𝑥𝑘/2𝐶𝑘 𝑥 ]𝑥=𝑦𝑖
′′

𝐶𝑘
 𝑙  0 = 𝛿𝑙,𝑘

 = 0, 𝑖 = 1 1 𝑛 𝑎𝑛𝑑 𝑙 =

0,1, … , 𝑘  
 
To determine 𝑈𝑗  𝑥  let 
(4.5) 
𝑈𝑗 (𝑥) =

𝐶1𝑥
𝑘+1𝑙𝑗  𝑥 𝐿𝑛

 𝑘−1  𝑥 +

 𝐶2𝑥
𝑘𝐿𝑛

(𝑘) 𝑥 𝐿𝑛
(𝑘−1) 𝑥   

𝐿𝑛
(𝑘−1)′

 𝑡 +[𝐶3+𝐶4(𝑡−𝑥𝑗 )]𝐿𝑛  
(𝑘−1)

 𝑡 

(𝑡−𝑥𝑗 )2

𝑥

0
𝑑𝑡 

Where 𝐶1 , 𝐶2, 𝐶3 𝑎𝑛𝑑 𝐶4 are constants . 𝑙𝑗 (𝑥) is defined in 
(2.8) . As 𝑈𝑗  𝑥  is a polynomial of degree ≤ 3n+k so the 
integrand in (4.5) must be a polynomial of at most degree n 
which implies  
(4.6) 𝐿𝑛

 𝑘−1 ′ (𝑡) + [𝐶3 + 𝐶4(𝑡 − 𝑥𝑗 )]𝐿𝑛 
(𝑘−1) 𝑡 = 0 

By using (2.2), (2.3), (2.8) we determine 
(4.7) 𝐶3 = −1, 𝐶4 =

𝑛+𝑘

𝑥𝑗
 𝐶1 =

1

𝑥𝑗
 𝑘+1 

𝐿𝑛
 𝑘−1 

(𝑥𝑗 )
 

Since 𝑈𝑗  𝑥  satisfies the conditions (4.1) by which we obtain 
(4.8) 𝐶2 = −

1

𝑥𝑗
𝑘𝐿𝑛

𝑘  𝑦𝑗  𝐿𝑛
(𝑘)′

(𝑥𝑗 )𝐿𝑛
 𝑘−1 

(𝑥𝑗 )
 

Hence we find the first fundamental polynomial 𝑈𝑗 (𝑥)of 
degree ≤ 3n+k 
To find second fundamental polynomial let 
(4.9 ) 𝑉𝑗  𝑥 = 𝐶5𝑥

𝑘+1[𝐿𝑛
 𝑘  𝑥 ]2𝑙𝑗

∗(𝑥) + 

+𝐶6𝑥
𝑘𝐿𝑛

(𝑘) 𝑥 𝐿𝑛
(𝑘−1) 𝑥   

(𝑡 − 𝑦𝑗 )𝐿𝑛
 𝑘  𝑡 + 𝐶7𝐿𝑛 

(𝑘−1) 𝑡 

(𝑡 − 𝑦𝑗 )2

𝑥

0

𝑑𝑡 

Where 𝐶5, 𝐶6, 𝐶7 and 𝐶8 are arbitrary constants. Since this is 
a polynomial of degree ≤ 3n+k therefore the expression 
under the integral sign must be a polynomial of degree n, 
which implies  
 (4.10) 𝐶7 = 1  
 By using (2.9), first and second condition of (4.2) we get 
 (4.11) 𝐶5 =

1

𝑦𝑗
 𝑘+1 

[𝐿𝑛
 𝑘 

(𝑦𝑗 )]2
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Using third condition of (4.2) we get  
 (4.12) 𝐶6 =

𝜂

𝑦𝑗
 𝑘+1 

[𝐿𝑛
 𝑘 

 𝑦𝑗  ]2𝐿𝑛
 𝑘−1 ′

(𝑦𝑗 )
  

 where 𝜂 =
1

(𝑘+𝑦𝑗 )
[

1

12
 𝑘2 + 𝑦𝑗

2 −
𝑘

6
 13𝑦𝑗 + 7 −

7

3
𝑛𝑦𝑗 ] 

 
Hence we find the first fundamental polynomial 𝑉𝑗 (𝑥)of 
degree ≤ 3n+k 
Again let  
 (4.13) 𝑊𝑗   𝑥 = 𝐶8𝑥

𝑘𝐿𝑛
 𝑘  𝑥 𝐿𝑛

 𝑘−1  𝑥  𝑙𝑗
∗𝑥

0
(𝑡)𝑑𝑡 

 Where 𝐶9 is a constant,𝑙𝑗∗(𝑡) is defined in (2.9) .𝑊𝑗 (𝑥) is 
polynomial of degree ≤ 3n+k satisfying the conditions (4.3) 
by which we obtain  
 

 (4.14) 𝐶8 = −
𝑒
𝑦𝑗 /2

2𝑦
𝑗
3𝑘/2

[𝐿𝑛
 𝑘 

(𝑦𝑗 )]2
  

 
Hence we find the third fundamental polynomial 𝑊𝑗 (𝑥) of 
degree ≤ 3n+k 
 
To find 𝐶𝑗 (𝑥), we assume 𝐶𝑗 (𝑥) for fixed 
𝑗 𝜖  0,1, …… . . , 𝑘 − 1  in the form 
 
 (4.15) 𝐶𝑗  𝑥 =  𝑝𝑗  𝑥 𝑥

𝑗𝐿𝑛
 𝑘 (𝑥)[𝐿𝑛

 𝑘−1  𝑥 ]2 +

𝑥𝑘𝐿𝑛
 𝑘 (𝑥)𝐿𝑛

 𝑘−1  𝑥 𝑔𝑛(𝑥) 
 Where 𝑝𝑗  𝑥  and 𝑔𝑛(𝑥) are polynomials of degree k-j-1 and 
n respectively . Now it is clear that 𝐶𝑗

(𝑙) 0 = 0 𝑓𝑜𝑟 (𝑙 =

0,…… , 𝑗 − 1) and since 𝐿𝑛
(𝑘) 𝑥𝑖 = 0 and 𝐿𝑛

(𝑘−1) 𝑦𝑖 = 0 we 
get  
𝐶𝑗  𝑥𝑖 = 0 𝑎𝑛𝑑 𝐶𝑗  𝑦𝑖 = 0 𝑓𝑜𝑟 𝑖 = 1 1 𝑛 . The coefficient 
of the polynomial 𝑝𝑗  𝑥  are calculated by the system 

 (4.16) 𝐶𝑗
 𝑙  0 =

𝑑 𝑙

𝑑𝑥 𝑙
 𝑝𝑗  𝑥 𝑥

𝑗𝐿𝑛
 𝑘  𝑥 [𝐿𝑛

 𝑘−1  𝑥 ]2 
𝑥=0

=

𝛿𝑖,𝑗   (𝑙 = 𝑗, …… , 𝑘 − 1) 

 

now from the equation 𝐶𝑗
 𝑘  0 = 0 we get 

 
(4.17) 𝑐𝑗 = 𝑔𝑛(0) =

−1

 𝑛+𝑘
𝑘  𝑘!𝐿𝑛

 𝑘−1  0 

𝑑𝑘

𝑑𝑥𝑘
[𝑝𝑗 (𝑥)𝑥 𝑗𝐿𝑛

 𝑘 (𝑥)[𝐿𝑛
 𝑘−1  𝑥 ]2]𝑥=0 

Now using the condition [𝑒−𝑥/2𝑥𝑘/2𝐶𝑗 (𝑥)]𝑥=𝑦𝑖
′′ = 0 of (4.7), 

we get 
 (4.18) 𝑔𝑛

′  𝑦𝑖 = −(𝑦𝑖)
𝑗−𝑘𝐿𝑛

 𝑘−1 ′ (𝑦𝑖)𝑝𝑗 (𝑦𝑖) 

 Which implies 𝑔𝑛
′ (𝑥) as follows  

(4.19) 𝑔𝑛
′ (𝑥) = −

𝐿𝑛
 𝑘−1 ′  𝑥 𝑝𝑗 (𝑥)+𝑞𝑗 (𝑥)𝐿𝑛

 𝑘−1 
(𝑥)

𝑥𝑘−𝑗  

Where  𝑞𝑗 (𝑥) is a polynomial of degree k-j-1 and function 
𝑔𝑛
′ (𝑥) will be a polynomial iff for 𝑟 = 0,1, … , 𝑘 − 𝑗 − 1 

 (4.20) 𝑑
𝑟

𝑑𝑥𝑟
[𝐿𝑛

 𝑘−1 ′ (𝑥)𝑝𝑗 (𝑥) + 𝑞𝑗 (𝑥)𝐿𝑛
 𝑘−1 (𝑥)]𝑥=0 = 0  

 
The coefficients of  𝑞𝑗 (𝑥) are uniquely calculated by this 
system . now integrating (4.19) we get  
(4.21) 𝑔𝑛(𝑥) = 𝑔𝑛(0) +  𝑔𝑛

′ (𝑡)𝑑𝑡
𝑥

0
 

Using (4.15) and (4.17) we obtain 𝐶𝑗 (𝑥) of degree ≤ 3n+k 
satisfying the conditions (4.4) 
 

 

 

Uniqueness and Existence 

 

As 𝑅𝑛(𝑥) in (3.1) satisfies the conditions (1.3) and (1.4) so 
the existence part is proved. Now we seek to determine a 
polynomial 𝑅𝑛(𝑥) of minimal possible degree ≤ 3n+k 
satisfying the conditions (4.22) for 𝑖 = 1 1 𝑛 and 𝑙 =
0,1, … , 𝑘 
 

(4.22) 

 
 
 

 
 𝑆𝑛 𝑥𝑖 = 0

𝑆𝑛 𝑦𝑖 = 0

[𝑒−𝑥/2𝑥𝑘/2𝑆𝑛 𝑥 ]𝑥=𝑦𝑖
′′

𝑆𝑛
𝑙  0 = 0

 = 0, 𝑖 = 1 1 𝑛 𝑎𝑛𝑑 𝑙 =

0,1, … , 𝑘  
Let us consider  
 
 (4.23) 𝑆𝑛 𝑥 =  𝑥𝑘𝐿𝑛

 𝑘 (𝑥)𝐿𝑛
 𝑘−1  𝑥 𝑠𝑛(𝑥) 

 Where 𝑠𝑛(𝑥) is a polynomial of at most degree n. now from 
the third condition of (4.22) we have 
 
 (4.24) 
[𝑒−𝑥/2𝑥𝑘/2𝑆𝑛(𝑥)]𝑥=𝑦𝑖

′′ =

2𝑒−𝑦𝑖/2𝑦𝑖
3𝑘/2

𝐿𝑛
(𝑘)′  𝑦𝑖 𝐿𝑛

(𝑘−1)′  𝑦𝑖 𝑠𝑛
′  𝑦𝑖 = 0 

 
This implies 𝑠𝑛′  𝑦𝑖 = 0 𝑓𝑜𝑟 𝑖 = 1 1 𝑛 so that 𝑠𝑛′  𝑥 ≡ 0 
hence 𝑠𝑛(𝑥) ≡ 𝑐 . so 
 
(4.25) 𝑆𝑛(𝑥) = 𝑐 𝑥𝑘𝐿𝑛

 𝑘 (𝑥)𝐿𝑛
 𝑘−1 (𝑥), but 

 

(4.26) 𝑑
𝑘𝑆𝑛

𝑑𝑥𝑘
 0 = 𝑐  𝑛+𝑘

𝑘
 𝑘! 𝐿𝑛

 𝑘−1  0 = 0 

Which implies 𝑐 = 0 as 𝐿𝑛
 𝑘−1  0 ≠ 0 hence 𝑆𝑛(𝑥) ≡ 0 

which completes the proof of the uniqueness. 
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