Mean Labeling of Some Graphs

N. Revathi

Department of Mathematics, Seethalakshmi Ramaswami College, Tiruchirappalli - 620002

Abstract: A graph G with p vertices and q edges is a mean graph if there is an injective function f from the vertices of G to $\{0,1,2,...,q\}$ such that when each edge uv is labeled with $\frac{f(u)+f(v)}{2}$ if f(u) + f(v) is even and $\frac{f(u)+f(v)+1}{2}$ if f(u) + f(v) is odd then the resulting edges are distinct. In this paper we investigate mean labeling of shadow graph of bistar and comb and splitting graph of comb.

Keywords: Mean labeling, comb , splitting graph, shadow graph, bistar

1. Introduction

By a graph G = (V(G), E(G)) with p vertices and q edges we mean a simple, connected and undirected graph. In this paper a brief summary of definitions and other information is given in order to maintain compactness. The term not defined here are used in the sense of Harary [3].

A graph labeling is an assignment of integers to the vertices or edges or both subject to certain conditions. A useful survey on graph labeling by J. A. Gallian (2014) can be found in [2].

Somasundaram and Ponraj [4] have introduced the notion of mean labeling of graphs.

In this paper we investigate mean labeling of shadow graph of bistar and comb and splitting graph of comb.

Definition 1.1 : A graph G with p vertices and q edges is a mean graph if there is an injective function f from the vertices of G to {0,1,2,...q} such that when each edge uv is labeled with $\frac{f(u)+f(v)}{2}$ if f(u) + f(v) is even and $\frac{f(u)+f(v)+1}{2}$ if f(u) + f(v) is odd then the resulting edges are distinct.

Definition1.2: A Comb is a caterpillar in which each vertex in the path is joined to exactly one pendent vertex.

Definition1.3: The Splitting graph of G,S(G) is obtained from G by adding to each vertex v of G a new vertex v' so that v' is adjacent to every vertex that is adjacent to v in G.

Definition1.4: The Shadow graph $D_2(G)$ of a connected graph G is obtained by taking two copies of G, sayG' and G" then joining each vertex u' in G' to the nighbours of the corresponding vertex u'' in G".

Definition1.5: A bistar is the graph obtained by joining the apex vertices of two copies of star $K_{1,n}$ by an edge.

2. Results on Mean Labeling

Theorem2.1: The graph $D_2(B_{n,n})$ has mean labeling.

Proof: Consider two copies of $B_{n,n}$.

Let $\{v_1, v_2, v_{1,j}, v_{2,j}, 1 \le j \le n\}$ be the vertices of first copy of $B_{n,n}$.

Let $\{u_1, u_2, u_{1,j}, u_{2,j}, 1 \le j \le n\}$ be the vertices of second copy of $B_{n,n}$ where v_1, v_2 and u_1, u_2 are the respective apex vertices.

Let $D_2(B_{n,n})$ b the shadow graph of the two copies of $B_{n,n}$. Define $f: V(D_2(B_{n,n}) \rightarrow \{0,1,2,\ldots,q\}$ by $f(v_1) = 0$ $f(v_2) = 8n + 1$ $f(u_1) = 4n$ $f(u_2) = 8n + 3$ $f(v_{1,j}) = 4j - 3$ if $1 \le j \le n$ $f(v_{2,j}) = 4j$ if $1 \le j \le n - 1$ $f(v_{2n}) = 4n + 4$ $f(u_{1,j}) = 4j - 1$ if $1 \le j \le n$ Thus the induced edge labels are distinct. Hence the graph $D_2(B_{n,n})$ has mean labeling.

Example2.2:

Theorem2.3: The split graph of comb has mean labeling.

Proof: Let $\{v_i, 1 \le i \le n\}$ and $\{v'_i, 1 \le i \le n\}$ be the vertices of comb in which $\{v'_i, 1 \le i \le n\}$ are the pendent vertices Let $\{u_i, 1 \le i \le n\}$ and $\{u'_i, 1 \le i \le n\}$ be the newly added vertices.

The ordinary labeling for split graph of comb

Define $f: v(G) \rightarrow \{0,1,2,...,q\}$ by $f(v_i) = 6i - 4$ if *i* is odd = 6i - 3 if *i* is even $f(v'_1) = 1$ $f(v'_3) = 15$ Let $f(v'_i) = 6i - 3$ if *i* is odd $i \neq 1,3$ = 6i - 4 if *i* is even $f(u_i) = 6i - 6$ if *i* is odd = 6i - 7 if *i* is even $f(u'_1) = 3$ $f(u'_3) = 11$ $f(u'_i) = 6i - 7$ if *i* is odd $i \neq 1,3$ = 6i - 6 if *i* is even Thus the induced edge labels are distinct.

Hence the above defined function provides mean labeling for split graph of comb.

Example 2.4:

Mean labeling for split graph of comb

Theorem2.5: $D_2(comb)$ admits mean labeling. Proof: Consider two copies of comb G_1 and G_2 .

Let $\{v_i, 1 \le i \le n\}$ and $\{v'_i, 1 \le i \le n\}$ be the vertices of comb G_1

Let $\{u_i, 1 \le i \le n\}$ and $\{u'_i, 1 \le i \le n\}$ be the vertices of comb G_2

The ordinary labeling for $D_2(comb)$ as

Let G be the shadow graph of comb Define f: $v(G) \rightarrow \{0, 1, 2, ..., q\}$ by $f(v_i) = 8i - 8$ if i is odd, $1 \le i \le n$ = 8i - 7 if i is even, $1 \le i \le n$ $f(v'_i) = 8i - 7$ if i is odd, $1 \le i \le n$ = 8i - 8 if i is even, $1 \le i \le n$ $f(u_i) = 8i - 4$ if i is odd, $1 \le i \le n$ $g(u'_i) = 8i - 5$ if i is even, $1 \le i \le n$ = 8i - 4 if i is odd, $1 \le i \le n$ $f(u'_i) = 8i - 5$ if i is odd, $1 \le i \le n$ $g(u'_i) = 8i - 4$ if i is even, $1 \le i \le n$ $g(u'_i) = 8i - 4$ if i is even, $1 \le i \le n$ $g(u'_i) = 8i - 4$ if i is even, $1 \le i \le n$

Hence the above function provides mean labeling for shadow graph of comb.

Example2.6:

References

- [1] J.A.Bondy and U.S.R.Murthy, Graph Theory and Applications (North-Holland).Newyork (1976)
- [2] J. A. Gallian, A dynamic survey of labeling, *The Electronics Journal of Combinatorics 17*(2014).
- [3] F. Harary, Graph theory, Addison Welsey, Reading, Massachusetts, 1972.
- [4] S. Somasundaram and R. Ponraj, Mean labeling of graphs, *Natl. Acad, Sci. Let.*, 26 (2003) 210-213
- [5] S. Somasundaram and R. Ponraj, Some results on mean graphs, *Pure and Applied Mathe-matika Sciences*, 58(2003), 29 - 35.
- [6] S. Somasundaram and R. Ponraj, Non-existence of mean labeling for a wheel, *Bull. Pure and Appl. Sciences* (*Mathematics and Statistics*), **22E** 103 -111(2003).

Volume 4 Issue 10, October 2015

<u>www.ijsr.net</u>

[7] R. Ponraj and S.Somasundaram, Mean labeling of graphs obtained by identifying twographs, Journal of Discrete Mathematical Sciences and Cryptography, 11(2)(2008), 239-252.

Author Profile

N. Revathi received the M.Sc., M.Phil., degrees in mathematics from Seethalakshmi Ramaswami College, Trichy and working as a assistant professor in mathematics at Seethalakshmi Ramaswami College from 2008 to till now .Currently doing Ph.d in labeling of graphs .