
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 1, January 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Survey on Congestion Control Mechanism for TCP

Tejashri P. Mane
1
, Snehal Kanade

2

1Department of Computer Engineering, SKN Sinhgad Institute of Technology and Science,

Gat No. 309/310, Kusgaon (Bk.) Off Mumbai-Pune Expressway, Lonavala, Tal Maval, Dist Pune-410401, India

2Professor, Department of Computer Engineering, SKN Sinhgad Institute of Technology and Science,

Gat No. 309/310, Kusgaon (Bk.) Off Mumbai-Pune Expressway, Lonavala, Tal Maval, Dist Pune-410401, India

Abstract: Many-to-one traffic pattern is common in many data centered applications, where multiple senders sending data to one

receiver in parallel .This many-to-one traffic patterns overwhelms the single receiver and leads to performance degradation in such

applications. The reason for this performance degradation is the incast congestion occurred during data transfer. This article focusses

on various congestion control mechanism for TCP which will detect congestion occurred during data transfer .Congestion may cause

due to the switch buffer overflow or link in congestion. This study focusses on window based congestion control mechanisms. Here, the

TCP incast is studied by considering the relationships between the TCP throughput, Round-Trip Time(RTT),sending window and

receiver window.

Keywords: Incast congestion, TCP, RTT, Many-to-one traffic pattern.

1. Introduction

TCP is a end-to-end protocol. The Transmission Control

Protocol (TCP) is used as the transport-layer protocol for

reliable data transfer in data center networks same as it is on

the Internet. Reliable transmission is accomplished by means

of the utilization of a retransmit clock: for the segments sent

each one time, the sender expects an ACK from the recipient

before the clock terminates. If ACK is not received within

time, then a few fragments thought to be lost, because of the

network congestion and will be retransmitted at some proper

moment later. Sender side TCP uses a congestion window to

do congestion avoidance.The congestion window

demonstrates the vast measure of information that can be

conveyed on an association without being acknowledged.

When sender fails to receive an acknowledgement for a

packet within the estimated timeout, TCP identifies the

congestion.TCP incast collapse occurs due to the highly

bursty traffic of multiple TCP connections which overflows

the Ethernet switch buffer in a short period of time which

causes intense packet loss and thus TCP retransmission and

timeouts.

In recent years, the data center applications and web search

generally shows the Partition/Aggregate communication

pattern. First, a request is partitioned and sent to a number of

worker nodes. And then, the response packets generated by

the workers are transmitted to a common node for

aggregation, i.e., aggregator node. Such type of traffic may

cause network congestion, as multiple workers send the

response packets to the same aggregator at the same time.

This leads to the TCP performance degradation in terms of

goodput and query completion time due to the severe packet

loss at Top of Rack (ToR) switches. The TCP senders

aggressively transmit packets without knowing the network

pipe size, i.e., bandwidth-delay product which is extremely

small and thus causes TCP throughput collapse.

Figure 1: General scenario of to observe incast.

The TCP incast issue was accounted for first by D. Nagle et

al. in the design of a scalable storage architecture. They

found that the concurrent traffic between a client and many

storage devices overflows the network as the number of

storage devices increases. This results in multiple packet

losses and timeout. To avoid the incast congestion, they

reduce the clients receive socket buffer size to under

64kB.They also suggest to schemes such as reducing the

duplicate ACK threshold and disabling the slow-start to

avoid retransmission timeout.

2. TCP Tahoe

Tahoe refers to the TCP congestion control algorithm which

was recommended by Van Jacobson in his paper[1]. TCP

packet transmissions are timed by the approaching

acknowledgements.It consist of slow-start and congestion

avoidance phase.

2.1 Slow Start

This stage is begun at whatever point there is another TCP

association or restarts after the packet loss. Slow starts

recommends that the sender set the congestion window to 1

and afterward for every ACK got it expand the CWD by 1.

Paper ID: SUB15910 2651

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 1, January 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

So in the first round trip time(RTT) we send 1 packet, in the

second we send 2 and in the third we send 4. Thus we

increase exponentially until we lose a packet which is a sign

of congestion. When we experience congestion we

diminishes our sending rate and we diminish congestion

window to one. And start over again.

2.2 Congestion Avoidance

For congestion avoidance Tahoe uses „Additive Increase

Multiplicative Decrease‟. A packet loss is taken as a sign of

congestion and Tahoe saves the half of the current window as

a threshold value. It then set CWD to one and starts slow

start until it reaches the threshold value. After that it

increments linearly until it experiences a packet loss. Thus it

increase it window slowly as it approaches the bandwidth

capacity.

2.3 Problem

Tahoe utilizes the coarse-grained timeouts.It detects packet

losses by timeouts. It take a complete timeout interval to

detect a packet loss. Also since it doesn‟t send immediate

ACK‟s, it sends aggregate acknowledgements, therefore it

follows a „go back n „ approach. Thus every time a packet is

lost it waits for a timeout and the pipeline is emptied. This

offers a major cost in high band-width delay product links.

3. TCP Reno

Reno requires that we receive immediate acknowledgement

whenever a segment is received[3]. Whenever we receive a

duplicate acknowledgment, then his duplicate

acknowledgment could have been received if the next

segment in sequence expected, has been delayed in the

network and the segments reached there out of order or else

that the packet is lost. Reno introduced the „Fast Re-transmit‟

algorithm.

3.1 Fast Re-Transmit

1) Each time we receive 3 duplicate ACK‟s it means that the

segment was lost and re-transmit the segment immediately

and enter „Fast- Recovery‟

2) Set SSthresh to half the current window size and also set

CWD to the same value.

3) For each duplicate ACK receive increase CWD by one. If

the increased CWD is greater than the amount of data in

the pipe then transmit a new segment else wait. If there are

„w‟ segments in the window and one is lost, the we will

receive (w-1) duplicate ACK‟s. Since CWD is reduced to

W/2, therefore half a window of data is acknowledged

before we can send a new segment. After retransmitting a

segment, wait for atleast one RTT before we would receive

a new acknowledgement. Whenever we receive a new

ACK we reduce the CWND to SSthresh. If we had

previously received (w-1) duplicate ACK‟s then at this

point we should have exactly w/2 segments in the pipe

which is equal to what we set the CWND to be at the end

of fast recovery. After that continue with congestion

avoidance phase of Tahoe.

 3.2 Problem

It can only detect a single packet losses. If there is multiple

packet drop,then the first insight about the packet loss comes

when we receive the duplicate ACK‟s. But the data about the

second packet which was lost will come when the ACK for

the retransmitted first packet achieves the sender after one

RTT. Also it is possible that the CWD is reduced twice for

packet losses which occurred in one window. Another issue

is that if the widow is very small when the loss occurs then

we would never receive enough duplicate acknowledgements

for a fast re-transmit and we would have to wait for a coarse

grained timeout.

4. TCP New-Reno

New RENO is a slight change over TCP-RENO[3]. It has the

capacity to locate multiple packet loss and along these lines

is considerably more effective that RENO in the occasion of

multiple packet losses. Like Reno, New-Reno likewise goes

into fast retransmit when it gets different duplicate packets,

then again it contrasts from RENO in that it doesn‟t exit fast-

recovery until all the data which was out standing at the time

it entered fast recovery is acknowledged. Thus it overcomes

the problem faced by Reno of reducing the CWD multiples

times[4]. The fast-retransmit phase is the same as in Reno.

4.1 Fast Recovery

Like Reno, New-Reno likewise goes into fast retransmit

when it gets different duplicate packets, however it differs

from RENO in that it doesn‟t exit fast-recovery until all the

data which was out standing at the time it entered fast

recovery is acknowledged. Thus it overcomes the problem

faced by Reno of reducing the CWD multiples times. The

fast-transmit phase is the same as in Reno.

4.2 Problem

New-Reno suffers from the fact that its take one RTT to

detect each packet loss. At the point when the ACK for the

initially retransmitted packet is gotten at exactly that point

would we be able to find which other segment was lost.

5. SACK

TCP with „Selective Acknowledgments‟ is an extension of

TCP Reno and it works around the problems face by TCP

RENO and TCP New-Reno, specifically detection of

multiple lost packets, and re-transmission of more than one

lost packet per RTT.

SACK TCP requires that segments not be acknowledged

cumulatively but should be acknowledged selectively. Thus

each ACK has a block which describes which segments are

being acknowledged. In this manner the sender has a picture

of which fragments have been recognized and which are as

yet remarkable. Whenever the sender enters fast recovery, it

initializes a variable pipe which describes the how much data

is outstanding in the network, and it also set CWND to half

the current size. Each time it receives an ACK it decreases

Paper ID: SUB15910 2652

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 1, January 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

the pipe by 1 and every time it retransmits a segment it

increments it by 1.Whenever the pipe goes smaller than the

CWD window it checks which segments are unreceived and

send them. If there are no such segments outstanding then it

sends a new packet. Thus more than one lost segment can be

sent in one RTT.

5.1 Problem

The most serious issue with SACK is that as of now selective

acknowledgements are not given by the recipient.

6. Vegas

Vegas is a TCP implementation which is a modification of

Reno. It is a proactive measure to encounter congestion

which is much more efficient than reactive ones. It beats the

issue of coarse grain timeouts by proposing a calculation

which checks for timeouts at an extremely proficient

schedule. Also it beats the issue of requiring enough

duplicate acknowledgements to detect a packet loss, and it

also recommend a modified slow start algorithm which

prevent it from congesting the network. It does not depend

solely on packet loss as a sign of congestion. It detects

congestion before the packet losses occur.

The three major changes introduced by Vegas are:

6.1 New Re-Transmission Mechanism

Vegas extends on the re-transmission mechanism of Reno. It

stays informed regarding when each one fragment was sent

and it moreover computes an assessment of the RTT by

staying informed regarding to what extent it takes for the

affirmation to get back.

Whenever a duplicate acknowledgement is received, check

whether (current time-segment transmission time)> RTT

estimate; if it is then it immediately retransmits the segment

without waiting for 3 duplicate acknowledgements or a

coarse timeout. Thus it overcomes the problem faced by

Reno of not being able to detect lost packets when it had a

small window and it didn‟t receive enough duplicate Ack‟s.

To catch whatever other portions that may have been lost

preceding the retransmission, when a non duplicate

acknowledgement is received, if it is the first or second one

after a fresh acknowledgement then it again checks the

timeout values and if the segment time since it was sent

exceeds the timeout value then it re-transmits the segment

without waiting for a duplicate acknowledgment. Thus in this

way Vegas can detect multiple packet losses. Also it only

reduces its window if the re-transmitted segment was sent

after the last decrease. Along with this it overcome Reno‟s

problem of reducing the congestion window multiple time

when multiple packets are lost.

6.2 Congestion avoidance

It decides the congestion by a decrease in sending rate as

compared to the expected rate, as result of large queues

developing up in the routers. Accordingly at whatever point

the figured rate is too far from the normal rate it builds

transmissions to make utilization of the accessible transfer

speed, whenever the calculated rate comes too close to the

expected value it declines its transmission to anticipate over

saturating the bandwidth. Thus Vegas prevents congestion

quite effectively and doesn‟t waste bandwidth by transmitting

at too high a data rate and creating congestion and then

cutting back, which the other algorithms do.

6.3 Modified Slow-start

When a connection first starts it has no idea of the available

bandwidth and it is possible that during exponential increase

it over shoots the bandwidth by a big amount and thus

induces congestion. To this end Vegas increases

exponentially only every other RTT, between that it

calculates the actual sending through put to the expected and

when the difference goes above a certain threshold it exits

slow start and enters the congestion avoidance phase[6].

7. Conclusion

Congestion may happen due to the multiple senders

overwhelms the single receiver or switch buffer overflows or

link is in congestion. The mechanisms discussed above gives

the congestion control mechanisms for TCP at sender side.

All the mechanisms discussed above uses the congestion

window to adjust the sending rate thus preventing the

congestion. Vegas has the advantage over all other

mechanisms. It detects the packet loss much sooner as

compared to other mechanisms. It prevents congestion

efficiently and doesn‟t waste the bandwidth by transferring

data at high rate.

References

[1] V. Jacobson “Congestion Avoidance and Control”

SIGCOMM Symposium no communication and

architecture protocol.

[2] V.Jacobson “Modified TCP Control and Avoidance

Alogrithms”.Technical Report 30,Apr 1990.

[3] Fall, K., and Floyd, S. Simulation-based Comparisons of

Tahoe, Reno, and Sack TCP. ACM Computer

Communications Review 26, 3 (July 1996), 5–21.

[4] S.Floyd, T.Henderson “The New-Reno Modification to

TCP‟s Recovery Algorithm” RFC 2582, Apr 1999.

[5] Mathis, M., Mahdavi, J., Floyd, S., and Romanow, A.

TCP Selective Acknowledgment Options. Internet

Engineering Task Force, 1996. RFC 2018.

[6] L.S. Brakmo, L.L Peterson, “TCP Vegas:End to End

Congestion Avoidance on Global Internet” IEEE Journal

on Selected Areas in Communication Vol. 13,

1995(1465-1490).

Paper ID: SUB15910 2653

