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Abstract: Consider a system of two parallel queues where each customer must leave after service through a common gate G. Assume 

that service times at the two stations I and II are independent and identically distributed with density function ( )f w on[0, ) , and 

that exist service takes a fixed length of time 0  . Suppose further that a I-customer may be served at station I only if the previous I-

customer has completed exist service. In this paper the total service time is calculated. 
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1. Introduction 
 

If we assume in addition that entry to the servers also takes 

place through gate G, and that entry  can occur only at 

moments when no customer is undergoing exist service, we 

have two server analogue of the eight server queueing system 

described [7].1974 as representing the situation of an IBM 

2314 direct access storage device. We may think of the 

customers as requests to access disk modules I and II. 

 

 
Figure 1.1 

 

Schematic diagram for general system: service at G is 

instantaneous for incoming customers, and has positive 

constant duration for departing customers, in direct disk 

modules I and II. With the gate G representing the channel 

and exist service corresponding to data transmission [3]. The 

service at module I or II independently by individual access 

mechanisms. Thus in this situation, described schematically in 

figure 1.1. A I-customer arriving when the previous I-

customer has left the system may still have to wait for entry it 

is happens that the current II-customers is in the exist process. 

 

The waiting time W of a I-customer arriving at the queue is 

the time taken for station I to become ready to accept him, 

and the total service time is the sum 1 GS W   , where  1S  

is the service time at station I, and GW  is the time spent 

waiting for exist service. Even if the arrivals are Poisson, the 

times W and GW  are not mutually independent, because the 

interference between the two queues at G forces both W and 

GW  to depend on the progress of the II-queue. However, in 

assessing the performance of the system, it appears at least for 

small   to be a suitable approximation to regard the set-up as 

consisting of two parallel queues having independent Poisson 

arrivals, and having independent total service times with a 

suitable distribution [6]. Thus the determination of a 

distribution for 1 GS W  is of interest in itself.  

 

At the time of entry of a I-customer to to station I, the 

distribution of  1 GS W , Namely his total service time less 

 , depends both on the location of the II-customer currently 

being served (if any) and also on the number of II-customer 

waiting in the queue. However, the dependence on the size of 

the II-queue will be negligible if there are sufficiently many 

II-customer waiting that the possibility of this queue 

vanishing during the time 1 GS W to be used in 

approximating the whole system. 

 

 
Figure 1.2: Schematic diagram for system with infinite queue 

size 

 

Thus in the main part of this paper we shall make the 

simplifying that the queues for station I and II are 

inexhaustible, so that there is always one customer from each 

queue either in service, waiting for exist, or in the exist 
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process. Since a I-customer [II-customer] will always enter as 

soon as the previous I-customer [II-customer] has left gate G, 

the simpler schematic diagram will suffice to represent the 

system.  

 

2. The Embedded Markov Process 
 

To begin with, let us consider the possible conditions which 

may obtain as a I-customer enter I-service. One possibility is 

that the II-customer currently in the system has been waiting 

for exist service at the time of departure of the previous I-

customer. Thus as the current I-customer enters, the II-

customer is beginning exist service at the gate G. Let us call 

this state of the system 
1G  . The other possibility is that the 

current II-customer is in II-service, and has been for some 

length of time s  . Let us call this state of the system 1s .  

Analogously, we may define states IIG and IIS which the 

system may occupy at the epochs of entry II-customers in to 

the system. Now if we define  

nX = State of the system at the epoch of entry of the nth 

customer after observation begins. 

Its clear that  ( , 1)nX n can be modeled as a Markov 

process on the state space. 

   [ , ) [ , )I II I IIX G G        

Where  [ , ) :I Is s    and [ , )II  are unconnected 

copies of the real interval [ , )  and  IG and  IIG are 

isolated points. If ( , )P x A  denotes the probability that 

1nX A  given nX x , Where x X and ( )A B X . the 

 -algebra of Borel subsets of X, then defining 

  ( ) (2.1)
w

F w f r dr



   

We have 

     , , 1 ( )I II II IP G G P G G F     

     , , ( )I II II IP G P G F     

     
0

( ) ( )
, , ( )

( )
I II II II

v

F s v F s v
P s G P s G f v dv

F s






   
    

and 

     
0

( ) ( )
, , ( )

( )
I II II I

v

F v F v
P s G P s G f s v dv

F s






 
    

  

If ( ) 0f s  . Moreover , each x in [ , ) [ , )I II    , the 

measure P(x,A) restricted to [ , )I  or [ , )II   has a 

density P(x,y) with respected to lebesgue measure, and given 

by 

 

 
0

,

( )
, ( )

( )

0 (2.2)

I II

II I

v

P s v

F v
P s v f s v for v

F s

for v

 









   

 

  

   

Again provided that ( ) 0f s  . (note that for negative 

arguments the service-time density f is 0).Now the Deoblin 

condition for the existence of an invariant probability 

measure for the process ( , 1)nX n (Doob [5] (1953)] will 

hold if it can be shown that  

     , ,I I I IIP s G P s G  

is bounded below as s varies. That is the following condition 

suffices. 

Condition D.  

0

0

( ) ( )
( )

( )

( ) ( )
( )

( )

v

v

F s v F s v
f v dv

F s

F v F v
f s v dv

F s














   

 
  





 

for some 0   and all t.Since condition D is easily seen to 

be satisfied for the particular cases of f treated . Let us 

assume hence forward that it is satisfied in the general 

formulation. For  ( , 1)nX n there is only one ergodic set, 

i.e  only one set s such that  

( , ) 1P x S 
        

if x S  

                = 0         if x S  

and this ergodic set is X. Also if ( ) 0F   , as we shall also 

assume there are no cyclically moving sets i.e we cannot find 

disjoint 1 2, ,............. rA A A for 2r such that  

( , ) 1iP x A    if 1, 2,....ix A j r   

                                    = 1  if  j=1 and rx A  

it then follows (Doob (1953)) that there is a unique 

probability measure π on ( , ( ))X B X such that 

( ) ( ) ( , ) (2.3)A dx P x A    

and that for this measure π,  

( ,.) (.) 0lim m
m

P x 


    

Where  

1 1( , ) Pr( ) | )m mP x A X A X x    

and . denotes the total variation of the set function . Thus 

the in variant measure π may be interpreted as a steady-state 

distribution of nX .  

 

3. The Associated Semi-Markov Process 
  

We may now define a process  ( ),X t t R  in real time 

talking values in X as follows. Let n be the time of  the nth 

transition epoch, and let  
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( ) ( )n nX t X X       if 1n nt     

( ) (0)X t X               if 10 t    

that is X(t) is the state attained at the most recent transition 

epoch  prior to time t. The process                 

 ( ),X t t R  may evidently be regarded as a semi-

Markov process on (X, B(X)), the theory of semi-Markov 

process on general state spaces is discussed by clinar[4] 

(1969). Now let 
 nT 

 
be the time after n  of  the first 

passage of the  ( ),X t t R   process into 

 1 1[ , ) G   . If n  

corresponds to the  entry of  I-customer, 
nT  may be regarded 

as the time to exist service of that customer or 1 GS W  in 

the notation of the introduction. let  

( ) ( | ( ) )w n n IIG w P T w X s    

( ) ( | ( ) )s n n IF w P T w X s    

( ) ( | ( ) )n n IH w P T w X G    

Then the quality of interest, namely the transform of the 

steady state distribution of  1 GS W , will be  

0

( ) ( ) (3.1)i wf e df w


  


 

where  

 

  
[ , )

( ) 2 ( ) ( ) 2 ( ) (3.2)
I

I

s I If w F w d s G H w


 


 


 

and  π denotes the steady-state distribution of nX defined in 

3.1. Since  ( ),X t t R   is a semi-markov on (X, B(X)) 

the following equations for first passage time probabilities are 

satisfied.  

 

 

1 1

[ , ) 0

[ , )

( | ( ) )

( , ) ( | ( ) )

( , ) ( ), (3.3)

II II

I II

n n

w

xy n n

G u

xy

G

P T w X x

P x dy d P T w u X y

P x dy w











 

  

 

 

    

  

 



where ( )xy u is the conditional distribution of  1n n   , 

given that 1( ) , ( )n nX x X y    . 

Clearly , from this equation  

( ) ( )( ( ) ( ) ( ).H w I w I F F G w         

where                                              

 ( ) 0, 0I x x   

                                       =  1,            0x     

It is also easily seen under condition c to be described below , 

that sG  and sF have densities ( )sg w and ( )sf w  which are 

bounded uniformly in s for w in finite intervals. Then 

( )f w for w  will also have a  density, given by 

  
[ , )

2 ( ) ( ) 2 ( ). (3.4)
I

I

s I If w d s G g w



  


 

 

Moreover the densities ( )sg w and ( )sf w will satisfy a 

density version of (3.3), which will yield  

  

0

( ) ( )

( ) ( ) ( )( ( ) ( ))

( ) ( ) ( ) (3.5)

s

w

r s

r

F s g w

F w f s w f w F s w F s w

f r s F r s g w s dr





 

 


 





      

     

 

and  

0

( ) ( )

( ) ( ) ( )( ( ) ( ) ( ))

( ) ( ) ( ) (3.6)

s

w

r

r

F s f w

F s w f w f w s F w F w I w

f r s F r g w r dr




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 








      

    

 

Thus  

( , ) ( ) ( )sB s w F s g w
 

And 

( , ) ( ) ( )sE s w F s f w  

We have, 

0

( , ) ( , ) ( ) ( , ) (3.7)

w

r

B s w A s w f r B r s w r dr



 




       

And  

0

( , ) ( , ) ( ) ( , ) (3.8)

w

r

E s w e s w f r s B r w r dr



 




       

( , ) ( ) ( )

( )( ( ) ( )) (3.9)

A s w F w f s w

f w F s w F s w 

 

     
 

And  

( , ) ( ) ( )

( ( )( ( ) ( )) ( ) (3.10)

e s w F s w f w

f s w f w F w I w  

 

     
 

Thus if then (3.1), (3.2) and (3.4),  

0

0 0

( ) 2 ( ) ( , )

2 ( , ) 2 [1 ( ) ( , )] (3.11)

u

i

f D u u

D C e f B

   

     



 



 

 

   


 

 

 

 

Where  

0

( , ) ( , )is e s w dw  


  


 

and  

0

( , ) ( , )iB s e B s w dw


  


 

With a similar definition for ( , )B s 



 we have  
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( , ) ( , ) ( ) ( , ) (3.12)i i

r

B s e s e e f r s B r dr    


 



  
  

 

and thus to find ( )f 



we need to determine 

0 0, , ( )D C D u and ( , )B s 



for ( )s  .It is possible  to 

show that the densities ( )sg w and ( )sf w exist and are 

bounded uniformly in s for w in finite intervals if the 

following condition holds.  

Condition C. The function  

( )
( ) sup

( )s

f s w
R w

f w


  

is also bounded for w in finite intervals . 

First from this condition it follows that f(w) and 

( ) ( )
( ) sup

( )s

f s w f s w
S w

f s

   
 are bounded in 

finite intervals . Next it may be noted that for 

, ( ), ( )s sw G w f w possess , namely 

 
( ) ( )

( ) ( ) ( )
( )

s

f w f s w
g w f w R w

f s


       and 

( ) ( )
( ) ( )

( )
s

f s w f w
f w f w

f s


  

Finally   , existence and boundedness of the densities for 

general w follows inductively with the aid of the probabilistic 

considerations used in establishing (3.5) and (3.6). 

 

Condition C which again is easily seen to hold in the special 

cases of f treated in this paper, is also sufficient to establish 

the existence of the density D(u). Fro under C it is possible to 

show that ( , )I IP s v and ( , )II IIP s v are bounded uniformly 

in s for v in finite intervals. From this it follows that for any 

set Δ of lebesgue measure l(Δ) within a finite interval of 

( , )I  ( , ) ( )mP x Kl    for some constant K and every 

m, and therefore that π restricted ( , )I  is absolutely 

continuous with respect to of lebesgue measure.  

 

4. Conclusion 
 

In this paper, we determined that the queues for station I and 

II are inexhaustible, so that there is always one customer from 

each queue either in service, waiting for exist, or in the exist 

process. Since a I-customer [II-customer] will always enter as 

soon as the previous I-customer [II-customer] has left gate G, 

the simpler schematic diagram will suffice to represent the 

system. At the time of entry of a I-customer to station I, the 

distribution of  1 GS W , Namely his total service time less 

 , depends both on the location of the II-customer currently 

being served (if any) and also on the number of II-customer 

waiting in the queue. However, the dependence on the size of 

the II-queue will be negligible if there is sufficiently many II-

customers waiting that the possibility of this queue vanishing 

during the time 1 GS W to be used in approximating the 

whole system. 
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