An Advanced Information Retrieval System of Relational Keyword Search Scheme

Gholap Dhananjay A.1, Gumaste S. V.2

ME Student, Department of Computer Engineering, Sharadchandrapawar College of Engineering, Otur, Pune, India
Professor, Department of Computer Engineering, Sharadchandrapawar College of Engineering, Otur, Pune, India

Abstract: In the last few years, a keyword search technique to relational database has been an interesting area of research system within the relational database and information retrieval (IR) system. A huge number of attempts have been invented and executed, but due some problem, there remains lack of standard system. This lack of standard system it resulted in inaccurate results from different attempts. In this paper present a thought an advanced information retrieval system of relational keyword search scheme. Results shows that large number of existing search schemes do not provide better work for information retrieval tasks. In some schemes, memory consumption prevent many paper present a thought an advanced information retrieval system of relational keyword search scheme. Results shows that large number of

Keywords: Information Retrieval, Keyword Search, Datasets, Query Workloads, Schema-based Systems, Graph-based Systems

1. Introduction

The universal search text box has transformed the way people interact with large information. Almost of all Internet users use a search engine daily [10], performing in excess of 3 billion searches [11]. The success of keyword search systems from what it does not need—namely, a special query language or knowledge of the structure of the data. Large number of internet user uses keyword search system.

Interaction for getting information, and it is important to extend this scheme to relational data information. This extension has been an important area of research throughout the past 10 years. We are not conscious of any research projects that have transit from proof-of-concept operations to deploy system. We imagine that the existing ad-hoc evaluations performed by researchers are not indicative of these system’s real-world performance, a claim that has surfaced recently in the literature [1], [5], [22].

The large number of research papers being published in this track, existing empirical evaluations reject or only partially address many important points related to search working performance. Baid et al. [1] explain that existing systems have unpredictable performance which undermines their usefulness for real-world retrieval work. This point has little support in the existing literature, but the failure for these systems to gain a foothold implies that robust, independent evaluation is needed. In part, existing performance problems may be obscured by experimental design evaluations such as the selection of datasets or the creation of query workloads.

Therefore consequently, conduct an interesting , independent , advanced evaluation of existing keyword search schemes using a publicly useable benchmark to increase real-world performance for realistic query workload.

A. Overview of Keyword Search

Keyword searching on semi-structured information (e.g., XML) and relational information different from existing IR. A difference presents between the data’s physical storage and a logical view of the information. Relational databases are normalized to remove redundancy, and foreign keys find out related information. Search queries regularly cross these relationships (i.e., a subset of search terms is describe in one tuple and the other remaining terms are found in related tuples), which enables relational keyword search systems to recover a logical view of the information. The intrinsic assumption of keyword search that is, the search terms are related , makes complex search process because classically there are many feasible relationships between two search terms. It is almost always possible to insert another occurrence of a search term by including tuples to an existing result. This implementation leads to tension between the conciseness and average search results.

<table>
<thead>
<tr>
<th>Country</th>
<th>Code</th>
<th>Name</th>
<th>Capital</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CH</td>
<td>Switzerland</td>
<td>Berne</td>
</tr>
<tr>
<td>D</td>
<td>F</td>
<td>France</td>
<td>Berlin</td>
</tr>
<tr>
<td>F</td>
<td>FL</td>
<td>Liechtenstein</td>
<td>Vaduz</td>
</tr>
</tbody>
</table>

Figure 1: Example relational data from the MONDIAL database (left)
borders France, which borders Germany; etc. As shown on the right in the figure, we can continue to construct results by adding intermediary countries, and we are only considering two relations and a handful of tuples from a much larger database.

Creating coherent search results from discrete tuples is the primary reason that searching relational data is significantly more complex than searching unstructured text. Unstructured text allows indexing information at the same granularity as the desired results (e.g., by documents or sections within documents.)

This task is impractical for relational data because an index over logical (or materialized) views is considerably larger than the original data [1], [21]. In this paper, focus on keyword search techniques for relational data, and we do not discuss approaches designed for XML.

Query: “Switzerland Germany”
Results:
1 Switzerland → [borders] → Germany
2 Switzerland → [borders] → Austria → [borders] → Germany
2 Switzerland → [borders] → France → [borders] → Germany
4 Switzerland → [borders] → Italy → [borders] → Austria → [borders] → Germany
4 Switzerland → [borders] → Italy → [borders] → France → [borders] → Germany
4 Switzerland → [borders] → Liechtenstein → [borders] → Austria → [borders] → Germany
7 Switzerland → [borders] → Austria → [borders] → Italy → [borders] → France → [borders] → Germany
Search Results (Right) are ranked by size (number of tuples) which account for the ties in the list.

b. Contributions and Outline
As we discuss later in this paper, many relational keyword search systems approximate solutions to intractable problems. Researchers consequently rely on empirical evaluation to validate their heuristics. Continue this tradition by evaluating these systems using a benchmark designed for relational keyword search. Our holistic view of the retrieval process exposes the real-world tradeoffs made in the design of many of these systems. For example, some systems use alternative semantics to improve performance while others incorporate more sophisticated scoring functions to improve search effectiveness. These tradeoffs have not been the focus of prior evaluations. The major contributions of this paper are as follows:
• Conduct an independent, An Advanced Information Retrieval System of Relational Keyword Search Scheme, which doubles the number of comparisons as previous work.
• End result will not authenticate previous claims regarding the scalability and presentation of relational keyword search schemes. Present search systems perform weakly for datasets higher than tens of thousands of vertices.
• Describe that the parameters diverted in existing evaluation are at best insecurely related to performance, which is likely due to experiment not using presentive datasets or query workloads.
• The task is the first to merge performance and search usefulness in the assessment of such a large number of systems. Considering these two issues in combination provides better understanding of these two crucial transactions among challenging system designs.

2. Motivation for Independent Evaluation
Most evaluations in the literature disagree about the performance of various search techniques, but significant experimental design differences may account for these discrepancies. Discuss three such differences in this section.

A. Datasets
Table1 summarizes the datasets and the number of queries used in previous evaluations. Even though this table suggests some uniformity in evaluation datasets, their content varies dramatically. Consider the evaluations of BANKS-II, BLINKS [12], and STAR. Only BANKS-II’s evaluation includes the entire Digital Bibliography & Library Project (DBLP) and the Internet Movie Database (IMDb) dataset. Both BLINKS and STAR use smaller subsets to facilitate comparison with systems that assume the data graph fits entirely within main memory. The literature does not address the representativeness of database subsets, which is a serious threat because the choice of a subset has a profound effect on the experimental results.

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>DATASET</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BANK[2]</td>
<td>bibliographi</td>
<td>100K</td>
<td>300K</td>
<td>7</td>
</tr>
<tr>
<td>DISCOVER-II [14]</td>
<td>DBLP</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BANKS-II [17]</td>
<td>DBLP</td>
<td>2M</td>
<td>9M</td>
<td>200</td>
</tr>
<tr>
<td>IMDb</td>
<td>2M</td>
<td>9M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liu et al. [21]</td>
<td>lyrics</td>
<td>196K</td>
<td>192K</td>
<td>50</td>
</tr>
<tr>
<td>DPBF [8]</td>
<td>DBLP</td>
<td>7.9M</td>
<td></td>
<td>500</td>
</tr>
<tr>
<td>MovieLen</td>
<td>1M</td>
<td>1M</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>BLINKS [13]</td>
<td>DBLP</td>
<td>409K</td>
<td>591K</td>
<td>60</td>
</tr>
<tr>
<td>IMDb</td>
<td>68K</td>
<td>248K</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>SPARK [22]</td>
<td>DBLP</td>
<td>882K</td>
<td>1.2M</td>
<td>18</td>
</tr>
<tr>
<td>IMDb</td>
<td>9.8M</td>
<td>14.8M</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>MONDIAL</td>
<td>10K</td>
<td></td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>EASE [20]</td>
<td>DBLIFE</td>
<td>10K</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>DBLP</td>
<td>12M</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MovieLen</td>
<td>1M</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>previous 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BANKS-III [6]</td>
<td>DBLP</td>
<td>1.8M</td>
<td>8.5M</td>
<td>8</td>
</tr>
<tr>
<td>IMDb</td>
<td>1.7M</td>
<td>1.9M</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>STAR [18]</td>
<td>DBLP</td>
<td>15K</td>
<td>150K</td>
<td>180</td>
</tr>
<tr>
<td>IMDb</td>
<td>30K</td>
<td>80K</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>YAGO</td>
<td>1.7M</td>
<td>14M</td>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>

[V] number of nodes (tuples) [E] number of edges in data graph
[Q] number of queries in workload

B. Query Workloads
The query workload is another critical factor in the evaluation of these systems. The trend is for researchers either to create their own queries or to create queries from terms selected randomly from the corpus. The latter strategy
is particularly poor because queries created from randomly-
selected terms are unlikely to resemble real user queries. The
number of queries used to evaluate these systems is also
insufficient. The traditional minimum for evaluating retrieval
systems is 50 queries and significantly more may be required
to achieve statistical significance [23]. Only two evaluations
that use realistic query workloads meet this minimum
number of information needs.

C. Experimental Discrepancies

Discrepancies among existing evaluations are prevalent.
Table II lists the mean execution times of systems from three
evaluations that use DBLP and IMDb databases. The table
rows are search techniques; the columns are different
evaluations of these techniques. Empty cells indicate that the
system was not included in that evaluation. According to its
authors, BANKS-II “significantly outperforms” BANKS,
which is supported by BANKS-II’s evaluation, but the most
recent evaluation contradicts this claim especially on DBLP.
Likewise, BLINKS claims to outperform BANKS-II [17] “by
at least an order of magnitude in most cases” [12], but when
evaluated by other researchers, this statement does not hold.

We use Table II to motivate two concerns that we have
regarding existing evaluations. First, the difference in the
relative performance of each system is startling. We do not
expect the most recent evaluation to downgrade the orders of
magnitude performance improvements to performance
degradations, which is the certainly the case on the DBLP
dataset. Second, the absolute execution times for the search
techniques vary widely across different evaluations.

Table II: Example of contradictory results in the literature

<table>
<thead>
<tr>
<th>System</th>
<th>DBLP (s)</th>
<th>IMDb (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANKS [2]</td>
<td>14.8</td>
<td>10.6</td>
</tr>
<tr>
<td>BANKS-II [17]</td>
<td>4.7</td>
<td>6.6</td>
</tr>
<tr>
<td>BLINKS [13]</td>
<td>1.2</td>
<td>2.8</td>
</tr>
<tr>
<td>STAR [18]</td>
<td>1.2</td>
<td>1.6</td>
</tr>
</tbody>
</table>

3. Relational Keyword Search Systems

Given our focus on empirical evaluation, we adopt a general
solution of keyword search over data graphs. This section
presents the search technique included in our evaluation.
Problem definition: We model a relational database as a
graph G=(V,E). Each vertex v ∈ V corresponds to a tuple in
the relational database. An edge (u,v) ∈ E represents each
relationship (i.e., foreign key) in the relational database. Each
vertex is decorated with the set of terms it contains. A query
Q comprises a list of terms. A result for Q is a tree T that is
reduced with respect to Q’. Subset Q; that is, T contains all
the terms of Q but no proper subtree that also contains all of
them. Results are ranked in decreasing order of their
estimated relevance to the information need expressed by Q.

A. Schema-Based Systems

Schema-based approaches support keyword search over
relational databases via direct execution of SQL commands.

These techniques model the relational schema as a graph
where edges denote relationships between tables. The
database’s full text indices identify all tuples that contain
search terms, and a join expression is created for each
possible relationship between these tuples.

DISCOVER [14] creates a set of tuples for each subset of
search terms in the database relations. A candidate network is
a tree of tuple sets where edges correspond to relationships in
the database schema. DISCOVER enumerates candidate
networks using a breadth-first algorithm but limits the
maximum size to ensure efficient enumeration. A smaller
size improves performance but risks missing results.
DISCOVER creates a join expression for each candidate
network, executes the join expression against the underlying
database to identify results, and ranks these results by the
number of joins.

Hristidis et al. [13] refined DISCOVER by adopting pivoted
normalization scoring to rank results:

\[\sum_{t \in Q} \frac{1 + \ln(1 + df)}{1 + \ln(tf + \sum_{q \in t} \frac{1}{df})} \times dtf \ln(\frac{N + 1}{df}) \]

where t is a query term, (q)tf is the frequency of the (query)
term, s is a constant (usually 0.2), dl is the document length,
avgdl is the mean document length, N is the number of
documents, and df is the number of documents that contain t.
The score of each attribute (i.e., a document) in the tree of
tuples is summed to obtain the total score. To improve
scalability, DISCOVER-II creates only a single tuple set for
each database relation and supports top-k query processing
because users typically view only the highest ranked search
results.

B. Graph-based Systems

The objective of proximity search is to minimize the weight
of result trees. This task is a formulation of the group Steiner
tree problem [9], which is known to be NP-complete [29].
Graph-based search techniques are more general than schema
based approaches, for relational databases, XML, and the
Internet can all be modeled as graphs.

BANKS[2] enumerates results by searching the graph
backwards from vertices that contain query keywords. The
backward search heuristic concurrently executes copies of
Dijkstra’s shortest path algorithm [7], one from each vertex
that contains a search term. When a vertex has been labelled
with its distance to each search term, that vertex is the root of
a directed tree that is a result to the query. BANKS-II
augments the backward search heuristic [2] by searching
the graph forwards from potential root nodes. This strategy has
an advantage when the query contains a common term or
when a copy of Dijkstra’s shortest path algorithm reaches a
vertex with a large number of incoming edges. Spreading
activation prioritizes the search but may cause the
idirectional search heuristic to identify shorter paths after
creating partial results. When a shorter path is found, the
existing results must be updated recursively, which
potentially increases the total execution time.
Although finding the optimal group Steiner tree is NP-complete, there are efficient algorithms to find the optimal tree for a fixed number of terminals (i.e., search terms). DPBF [8] is a dynamic programming algorithm for the optimal solution but remains exponential in the number of search terms. The algorithm enumerates additional results in approximate order.

He et al. [12] propose a bi-level index to improve the performance of bidirectional search. BLINKS partitions the graph into blocks and constructs a block index and intra-block index. These two indices provide a lower bound on the shortest distance to keywords, which dramatically prunes the search space.

STAR[16] is a pseudo polynomial-time algorithm for the Steiner tree problem. It computes an initial solution quickly and then improves this result iteratively. Although STAR approximates the optimal solution, its approximation ratio is significantly better than previous heuristics.

4. Related Work

Existing evaluations of relational keyword search systems are ad hoc with little standardization. Webber [22] summarizes existing evaluations with regards to search effectiveness. Although Coffman and Weaver [5] developed the benchmark that we use in this evaluation, their work does not include any performance evaluation. Baid et al. [1] assert that many existing keyword search techniques have unpredictable performance due to unacceptable response times or fail to produce results even after exhausting memory. Our results—particularly the large memory footprint of the systems—confirm this claim. A number of relational keyword search systems have been published beyond those included in our evaluation. Chen et al. [4] and Chaudhuri and Das [3] both presented tutorials on keyword search in databases. Yu et al. [35] provides an excellent overview of relational keyword search techniques.

Liu et al. and SPARK [22] both propose modified scoring functions for schema-based keyword search. SPARK also introduces a skyline sweep algorithm to minimize the total number of database probes during a search. Qin et al. [20] further this efficient query processing by exploring semi-joins. Baid et al. [1] suggest terminating the search after a predetermined period of time and allowing the user to guide further exploration of the search space. In the area of graph-based search techniques, EASE indexes all r-radius Steiner graphs that might form results for a keyword query. Golenberg et al. [12] provide an algorithm that enumerates results in approximate order by height with polynomial delay. Dalvi et al. [6] consider keyword search on graphs that cannot fit within main memory. CSTree provides alternative semantics—the compact Steiner tree—to answer search queries more efficiently.

In general, the evaluations of these systems do not investigate important issues related to performance (e.g., handling data graphs that do not fit within main memory). Many evaluations are also contradictory, for the reported performance of each system varies greatly between different valuations. Our experimental results question the validity of many previous evaluations, and we believe our benchmark is more robust and realistic with regards to the retrieval tasks than the workloads used in other evaluations. Furthermore, because our evaluation benchmark is available for other researchers to use, we expect our results to be repeatable.

5. Proposed System

In this proposed system, we are going to make An Advanced Information Retrieval System of Relational Keyword Search Scheme. Existing system in which many existing search techniques do not provide satisfactory performance for realistic retrieval tasks. In particular systems, memory utilization consist of many search techniques. We are going to explain relationship between execution time and factors different in previously evaluations; our investigation indicates that these factors have moderately little conflict on performance. In summary, our work will confirm the previous claim which is regarding with the improper performance of these systems and underscores the need for the consistency as represent by the IR area when we are going to examine these retrieval systems.

6. Algorithms

1. It results the files on basis of the file usage by Breadth-First algorithm.
2. Chart represents the ranking of the keyword searched by the user using Dijkstra's shortest path algorithm.
3. Keyword search is essential for computing the results quickly by using Steiner Tree Problem and improves time-taken for the search by using PseudoPolynomial Time Algorithm.
4. Discovers the files by its keyword and executes it in a fraction of second for the user by using Sparse algorithm.

7. Conclusion and Future Work

Unlike many of the evaluations reported in the literature, ours is designed to investigate not the underlying algorithms but the overall, end-to-end performance of these retrieval systems. Hence, we favor a realistic query workload instead of a larger workload with queries that are unlikely to be representative (e.g., queries created by randomly selecting terms from the dataset). Overall, the performance of existing relational keyword search systems is somewhat disappointing, particularly with regard to the number of queries will be completed in proposed query workload. Given previously published results, we were especially surprised by the number of timeout and memory exceptions that we witnessed. Because our larger execution times might only reflect our choice to use larger datasets, we focus on two concerns that we have related to memory utilization.

References

