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Abstract: In recent years, privacy-preserving data mining has been studied extensively, because of the wide proliferation of sensitive 

information on the internet. This paper investigates data mining as a technique for masking data; therefore, termed data mining based 

privacy protection. This approach incorporates partially the requirement of a targeted data mining task into the process of masking 

data so that essential structure is preserved in the masked data. The following privacy problem is considered in this paper: a data holder 

wants to release a version of data for building classification models, but wants to protect against linking the released data to an external 

source for inferring sensitive information. An iterative bottom-up generalization is adapted from data mining to generalize the data. 

The generalized data remains useful to classification but becomes difficult to link to other sources. The generalization space is specified 

by a hierarchical structure of generalizations. A key is identifying the best generalization to climb up the hierarchy at each iteration. 
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1. Introduction 
 

Information becomes sensitive when they are specific to a 

small number of individuals. Data mining, on the other hand, 

typically makes use of information shared by some minimum 

number of individuals to ensure a required statistical 

significance of patterns. As such, sensitive information is to 

be discarded for reliable data mining. This observation 

motivates to apply the requirement of an intended data 

mining task to identify useful information to be released, 

therefore, sensitive information to be masked. This approach 

is called data mining based privacy protection. A well-

studied technique for masking sensitive information, 

primarily studied in statistics, is randomizing sensitive 

attributes by adding random error to values. In these works, 

privacy was quantified by how closely the original values of 

a randomized attribute can be estimated. This is very 

different from the K-anonymity that quantifies how likely an 

individual can be linked to an external source. The privacy-

preserving data mining in [1] extends traditional data mining 

techniques to handle randomized data. Data mining itself is 

investigated as a technique for masking data. The masked 

data does not require modification of data mining techniques 

in subsequent data analysis. Instead of randomizing data, 

generalizing data makes information less precise. Grouping 

continuous values and suppressing values are examples of 

this approach. Compared to randomization, generalization 

has several advantages. First, it preserves the “truthfulness” 

of information, making the released data meaningful at the 

record level. This feature is desirable in exploratory and 

visual data mining where decisions often are made based on 

examining records. In contrast, randomized data are useful 

only at the aggregated level such as average and frequency. 

Second, preferences can be incorporated through the 

taxonomical hierarchies and the data recipient can be told 

what was done to the data so that the result can be properly 

interpreted. 

 

The increasing ability to accumulate, store, retrieve, cross-

reference, mine and link vast number of electronic records 

brings substantial benefits to millions of people. An example 

given in [4] is that a sensitive medical record was uniquely 

linked to a named voter record in a publicly available voter 

list through the shared attributes of Zip, Birth date, Sex. 

Indeed, since “the whole is greater than the sum of the parts”, 

protection of individual sources does not guarantee 

protection when sources are cross-examined. Consider the 

following anonymity problem [5]. A data holder wants to 

release a person-specific data R, but wants to prevent from 

linking the released data to an external source E through 

shared attributes R∩E, called the virtual identifier. One 

approach is to generalize specific values into less specific but 

semantically consistent values to create K-anonymity: if one 

record r in R is linked to some external information, at least 

K − 1 other records are similarly linked by having the same 

virtual identifier value as r. The idea is to make the inference 

ambiguous by creating extraneous linkages. An example is 

generalizing “birth date” to “birth year” so that everybody 

born in the same year are linked to a medical record with that 

birth year, but most of these linkages are non-existing in the 

real life. 

 

2. k- Anonymity: A Model for Protecting 

Privacy 
 

The attributes are generalized until each row is identical with 

at least k-1 other rows. At this point the database is said to be 

k- anonymous. k-anonymity [7],[8],[10] is a property that 

captures the protection of released data against possible re-

identification of the respondents to whom the released data 

refer. Consider a private table PT, where data have been de-

identified by removing explicit identifiers (e.g., SSN and 

Name). However, values of other released attributes, such as 

ZIP, Date of birth, Marital status, and Sex can also appear in 

some external tables jointly with the individual respondents’ 

identities. If some combinations of values for these attributes 

are such that their occurrence is unique or rare, then parties 
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observing the data can determine the identity of the 

respondent to which the data refer or reduce the uncertainty 

over a limited set of respondents. 

 

k-anonymity demands that every tuple in the private table 

being released be indistinguishably related to no fewer than k 

respondents. Since it seems impossible, or highly impractical 

and limiting, to make assumptions on which data are known 

to a potential attacker and can be used to (re-)identify 

respondents, k-anonymity takes a safe approach requiring 

that, in the released table itself, the respondents be 

indistinguishable (within a given set of individuals) with 

respect to the set of attributes, called quasi-identifier, that can 

be exploited for linking. In other words, k-anonymity 

requires that if a combination of values of quasi-identifying 

attributes appears in the table, then it appears with at least k 

occurrences.  

 

To illustrate, consider a private table reporting, among other 

attributes, the marital status, the sex, the working hours of 

individuals, and whether they suffer from hypertension. 

Assume attributes Marital status, Sex, and Hours are the 

attributes jointly constituting the quasi-identifier. Figure 1 is 

a simplified representation of the projection of the private 

table over the quasi-identifier. The representation has been 

simplified by collapsing tuples with the same quasi-

identifying values into a single tuple. 

  

 
Figure 1: Simplified representation of a private table 

  

The numbers at the right hand side of the table report, for 

each tuple, the number of actual occurrences, also specifying 

how many of these occurrences have values Y and N, 

respectively, for attribute Hypertension. For simplicity, in the 

following we use such a simplified table as our table PT. The 

private table PT in Figure 1 guarantees k-anonymity only for 

k ≤ 2. In fact, the table has only two occurrences of divorced 

(fe)males working 35 hours. If such a situation is satisfied in 

a particular correlated external table as well, the uncertainty 

of the identity of such respondents can be reduced to two 

specific individuals. In other words, a data recipient can infer 

that any information appearing in the table for such divorced 

(fe)males working 35 hours, actually pertains to one of two 

specific individuals. 

 

3. Bottom – Up Generalization 
 

Wang et al. [1] present an effective bottom-up generalization 

approach to achieve k-anonymity. They employed the sub-

tree generalization scheme. A generalization g : child(v) → 

v, replaces all instances of every child value c in child(v) 

with the parent value v. Although this method is designed for 

achieving k-anonymity, it can be easily modified to adopt the 

LKC-privacy model in order to accommodate the high-

dimensional data. 

 

3.1 The Anonymization Algorithm 

 

Algorithm 3.1.1 presents the general idea of bottom-up 

generalization method. It begins the generalization from the 

raw data table T. At each iteration, the algorithm greedily 

selects the Best generalization g that minimizes the 

information loss and maximizes the privacy gain. This 

intuition is captured by the information metric ILPG(g) = 

IL(g)/PG(g). Then, the algorithm performs the generalization 

child(Best) → Best on the table T , and repeats the iteration 

until the table T satisfies the given k-anonymity requirement. 

 

Algorithm 3.1.1 Bottom-Up Generalization 

1: while T does not satisfy a given k-anonymity requirement 

do 

2: for all generalization g do 

3: compute ILPG(g); 

4: end for 

5: find the Best generalization; 

6: generalize T by Best; 

7: end while 

8: output T; 

 

Let A(QID) and Ag(QID) be the minimum anonymity counts 

in T before and after the generalization g. Given a data table 

T, there are many possible generalizations that can be 

performed. Yet, most generalizations g in fact does not affect 

the minimum anonymity count. In other words, A(QID) = 

Ag(QID). Thus, to facilitate efficiently choosing a 

generalization g, there is no need to consider all 

generalizations. Indeed, we can focus only on the “critical 

generalizations.” 

 

DEFINITION 3.1: A generalization g is critical if Ag(QID) > 

A(QID). 

 

Wang et al. [1] made several observations to optimize the 

efficiency of Algorithm 3.1.1: A critical generalization g has 

a positive PG(g) and a finite ILPG(g), whereas a non-critical 

generalization g has PG(g) = 0 and infinite ILPG(g). 

Therefore, if at least one generalization is critical, all non-

critical generalizations will be ignored by the ILPG(g) 

information metric. If all generalizations are non-critical, the 

ILPG(g) metric will select the one with minimum IL(g). In 

both cases, Ag(QID) is not needed for a non-critical 

generalization g. Based on this observation, Lines 2-3 in 

Algorithm 3.1.1 can be optimized as illustrated in Algorithm 

3.1.2. 

 

Algorithm 3.1.2 Bottom-Up Generalization 

1: while T does not satisfy a given k-anonymity requirement 

do 

2: for all critical generalization g do 

3: compute Ag(QID); 

4: end for 

5: find the Best generalization; 

6: generalize T by Best; 

7: end while 

8: output T; 
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3.2 Data Structure 

 

To further improve the efficiency of the generalization 

operation, Wang et al. [1] propose a data structure, called 

Taxonomy Encoded Anonymity (TEA) index for QID = D1, . 

. . , Dm. TEA is a tree of m levels. The ith level represents 

the current value for Dj . Each root-to-leaf path represents a 

qid value in the current data table, with a(qid) stored at the 

leaf node. In addition, the TEA index links up the qids 

according to the generalizations that generalize them. When a 

generalization g is applied, the TEA index is updated by 

adjusting the qids linked to the generalization of g. The 

purpose of this index is to prune the number of candidate 

generalizations to no more than |QID| at each iteration, where 

|QID| is the number of attributes in QID. For a generalization 

g : child(v) → v, a segment of g is a maximal set of sibling 

nodes, {s1, . . . , st}, such that {s1, . . . , st} & child(v), where 

t is the size of the segment. All segments of g are linked up. 

A qid is generalized by a segment if the qid contains a value 

in the segment. 

 

A segment of g represents a set of sibling nodes in the TEA 

index that will be merged by applying g. To apply 

generalization g, we follow the link of the segments of g and 

merge the nodes in each segment of g. The merging of sibling 

nodes implies inserting the new node into a proper segment 

and recursively merging the child nodes having the same 

value if their parents are merged. The merging of leaf nodes 

requires adding up a(qid) stored at such leaf nodes. The cost 

is proportional to the number of qids generalized by g. 

 

 
Figure 2: The TEA structure for QID = {Relationship, 

Race, Workclass} 

 

Example 3.2.1 

Figure 2 depicts three taxonomy trees for QID attributes 

{Relationship, Race, Workclass} and the TEA index for qids: 

<c1, b2, a3> 

<c1, b2, c3> 

<c1, b2, d3> 

<c1, c2, a3> 

<c1, c2, b3> 

<d1, c2, b3> 

<d1, c2, e3> 

<d1, d2, b3> 

<d1, d2, e3> 

A rectangle represents a segment, and a dashed line links up 

the segments of the same generalization. For example, the 

left-most path represents the qid = <c1, b2, a3>, and a(<c1, 

b2, a3>) = 4. {c1, d1} at level 1 is a segment of f1 because it 

forms a maximal set of siblings that will be merged by f1. 

{c1c2} and {d1c2, d1d2} at level 2 are two segments of f2. 

{c1b2c3, c1b2d3} at level 3 is a segment of f3. <d1, d2, e3> 

and <d1, c2, e3>, in bold face, are the anonymity qids. 

 

Consider applying {c2, d2} → f2. The first segment of f2 

contains only one sibling node {c1c2}, we simply re-label the 

sibling by f2. This creates new qids <c1, f2, a3> and <c1, f2, 

b3>. The second segment of f2 contains two sibling nodes 

{d1c2, d1d2}. We merge them into a new node labeled by f2, 

and merge their child nodes having the same label. This 

creates new qids <d1, f2, b3> and <d1, f2, e3>, with a(<d1, 

f2, b3>) = 7 and a(<d1, f2, e3>) = 4. 

 

4. Conclusion 
 

The paper investigated data mining as a technique for 

masking data, called data mining based privacy protection. 

The idea is to explore the data generalization concept from 

data mining as a way to hide detailed information, rather than 

discover trends and patterns. Once the data is masked, 

standard data mining techniques can be applied without 

modification. The paper demonstrated another positive use of 

the data mining technology: not only can it discover useful 

patterns, but also mask private information. 

 

In particular, the paper presented a bottom-up generalization 

for transforming specific data to less specific but 

semantically consistent data for privacy protection. 
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